Skip to main content
Log in

Photoviscoelastic behavior and residual thermal birefringence in optical-grade polycarbonates

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The stress-optical coefficient functions of two optical-grade polycarbonates (PCs) have been obtained by simultaneous measurements of the relaxation modulus and strain-optical coefficient functions. Nonlinear behavior of the relaxation modulus and strain-optical coefficient was observed at small strains at room temperature. Comparison of these functions in the linear region with those of a commercial grade PC was made. These functions have been incorporated to linear viscoelastic and photoviscoelastic constitutive equations to calculate residual thermal birefringence in freely quenched PC plates. The numerical results have been compared with the measurements indicating a fair agreement between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bradshaw RD, Brinson LC (1997) A sign control method for fitting and interconverting material functions for linearly viscoelastic solids. Mech Time-Depend Mater 1:85

    Article  Google Scholar 

  • Colucci DM, O’Connell PA, McKenna GB (1997) Stress relaxation experiments in polycarbonate: a comparison of volume changes for two commercial grades. Polym Eng Sci 37(9):1467

    Article  Google Scholar 

  • Dill EH (1964) On phenomenological rheo-optic constitutive relations. J Polym Sci C Polym Symp 5:67

    Article  Google Scholar 

  • Doolittle AK (1953) Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free-space. J Appl Phys 22:12

    Google Scholar 

  • Hopkins IL, Hamming RW (1957) On creep and relaxation. J Appl Phys 28:906

    Article  CAS  Google Scholar 

  • Hopkins IL, Hamming RW (1958) Note on paper “on creep and relaxation”. J Appl Phys 29:742

    Article  Google Scholar 

  • Huang M (2003) Stress effects on the performance of optical waveguides. Int J Solids Struct 40:1615

    Article  Google Scholar 

  • Hwang EJ, Inoue T, Osaki K (1993) Viscoelasitcity and birefringence of bisphenol-A polycarbonate. Polymer 34:1661

    Article  CAS  Google Scholar 

  • Isayev AI (1983) Orientation development in the injection molding of amorphous polymers. Polym Eng Sci 23:271

    Article  CAS  Google Scholar 

  • Kroschwitz JI (ed) (2003) Encyclopedia of polymer science and technology. Wiley, Hoboken, NJ

    Google Scholar 

  • Moldflow (2006) MOLDFLOW data base, version 6. Moldflow, Framingham, MA

  • Osaki K, Inoue T (1991) Some phenomenological relations for strein-induced birefringence of amorphous polymers. Nihon Reoroji Gakkaishi 19:130

    CAS  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in fortran, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rusch KC (1968) Time–temperature superposition and relaxation behavior in polymeric glasses. J Macromol Sci Phys B2:179

    Google Scholar 

  • Shirouzu S, Shigematsu K, Sakamoto S, Nakagawa T, Tagami S (1989) Refractive index anisotropies of constructive units in polycarbonate. Jpn J Appl Phys 28:801

    Article  CAS  Google Scholar 

  • Shirouzu S, Shikuma H, Senda N, Yoshida M, Sakamoto S, Shigematsu K, Nakagawa T, Tagami S (1990) Stress-optical coefficients in polycarbonates. Jpn J Appl Phys 29:898

    Article  CAS  Google Scholar 

  • Shyu GD, Isayev AI, Li CT (2001) Photoviscoelastic behavior of amorphous polymers during transition from the glassy to rubbery state. J Polym Sci B Polym Phys 39:2252

    Article  CAS  Google Scholar 

  • Shyu GD, Isayev AI, Li CT (2003) Residual thermal birefringence in freely quenched plates of amorphous polymers: simulation and experiment. J Polym Sci B Polym Phys 41:1850

    Article  CAS  Google Scholar 

  • Stein RS, Onogi S, Sasaguri K, Keedy DA (1963) Dynamic birefringence of high polymer II. J Appl Phys 34:80

    Article  CAS  Google Scholar 

  • Takeshima M, Funakoshi N (1986) Molecular orientation distribution in injection molded polycarbonate discs. J Appl Polym Sci 32:3457

    Article  CAS  Google Scholar 

  • Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior, Chapter 8. Springer, Berlin

    Google Scholar 

  • Van Krevelen DW (1976) Properties of polymers. Elsevier, Amsterdam, p 271

    Google Scholar 

  • Wang KK, Cohen C, Koch DL, Hieber CA, Yoon K, Gupta M, Harlen OG (1991) Cornell injection molding program. Progress report no. 16. Cornell University, Ithaca, NY

Download references

Acknowledgements

The authors greatly appreciate the financial support of the NSF Division of Engineering (DMI-0322920) and the General Electric Company (GE) for providing optical-grade PCs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraam I. Isayev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, TH., Isayev, A.I. Photoviscoelastic behavior and residual thermal birefringence in optical-grade polycarbonates. Rheol Acta 47, 977–988 (2008). https://doi.org/10.1007/s00397-008-0290-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0290-3

Keywords

Navigation