Skip to main content

Advertisement

Log in

Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Projections for near-surface soil moisture content in Europe for the 21st century were derived from simulations performed with 26 CMIP5 global climate models (GCMs). Two Representative Concentration Pathways, RCP4.5 and RCP8.5, were considered. Unlike in previous research in general, projections were calculated separately for all four calendar seasons. To make the moisture contents simulated by the various GCMs commensurate, the moisture data were normalized by the corresponding local maxima found in the output of each individual GCM. A majority of the GCMs proved to perform satisfactorily in simulating the geographical distribution of recent soil moisture in the warm season, the spatial correlation with an satellite-derived estimate varying between 0.4 and 0.8. In southern Europe, long-term mean soil moisture is projected to decline substantially in all seasons. In summer and autumn, pronounced soil drying also afflicts western and central Europe. In northern Europe, drying mainly occurs in spring, in correspondence with an earlier melt of snow and soil frost. The spatial pattern of drying is qualitatively similar for both RCP scenarios, but weaker in magnitude under RCP4.5. In general, those GCMs that simulate the largest decreases in precipitation and increases in temperature and solar radiation tend to produce the most severe soil drying. Concurrently with the reduction of time-mean soil moisture, episodes with an anomalously low soil moisture, occurring once in 10 years in the recent past simulations, become far more common. In southern Europe by the late 21st century under RCP8.5, such events would be experienced about every second year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen C, Macalady A, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg E, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Boehlert B, Solomon S, Strzepek KM (2015) Water under a changing and uncertain climate: lessons from climate model ensembles. J Clim 28:9561–9582. doi:10.1175/JCLI-D-14-00793.1

    Article  Google Scholar 

  • Briceño-Elizondo E, Garcia-Gonzalo J, Peltola H, Matala J, Kellomäki S (2006) Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. For Ecol Manag 232:152–167. doi:10.1016/j.foreco.2006.05.062

    Article  Google Scholar 

  • Cheng S, Guan X, Huang J, Ji F, Guo R (2015) Long-term trend and variability of soil moisture over East Asia. J Geophys Res Atmos 120:8658–8670. doi:10.1002/2015JD023206

    Article  Google Scholar 

  • Dai A (2011) Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J Geophys Res Atmos 116(D12):115. doi:10.1029/2010JD015541

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. doi:10.1038/NCLIMATE1633

    Article  Google Scholar 

  • Dirmeyer PA, Jin Y, Singh B, Yan X (2013) Evolving land–atmosphere interactions over North America from CMIP5 simulations. J Clim 26:7313–7327. doi:10.1175/JCLI-D-12-00454.1

    Article  Google Scholar 

  • Dong W, Liu Z, Liao H, Tang Q, Li X (2015) New climate and socio-economic scenarios for assessing global human health challenges due to heat risk. Clim Change 130:505–518. doi:10.1007/s10584-015-1372-8

    Article  Google Scholar 

  • Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13:10081–10094. doi:10.5194/acp-13-10081-2013

    Article  Google Scholar 

  • Gao Y, Markkanen T, Thum T, Aurela M, Lohila A, Mammarella I, Kämäräinen M, Hagemann S, Aalto T (2016) Assessing various drought indicators in representing summer drought in boreal forests in Finland. Hydrol Earth Syst Sci 20:175–191. doi:10.5194/hess-20-175-2016

    Article  Google Scholar 

  • Hauck C, Barthlott C, Krauss L, Kalthoff N (2011) Soil moisture variability and its influence on convective precipitation over complex terrain. Quart J R Meteorol Soc 137:42–56. doi:10.1002/qj.766

    Article  Google Scholar 

  • Huang J, Ji M, Xie Y, Wang S, He Y, Ran J (2016) Global semi-arid climate change over last 60 years. Clim Dyn 46:1131–1150. doi:10.1007/s00382-015-2636-8

    Article  Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland expansion under climate change. Nat Clim Change 6:166–172. doi:10.1038/nclimate2837

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker, TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 1535

  • Jylhä K, Tuomenvirta H, Ruosteenoja K, Niemi-Hugaerts H, Keisu K, Karhu JA (2010) Observed and projected future shifts of climate zones in Europe and their use to visualize climate change information. Wea Clim Soc 2:148–167

    Article  Google Scholar 

  • Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos Trans R Soc B Biol Sci 363:2341–2351. doi:10.1098/rstb.2007.2204

    Article  Google Scholar 

  • Kurjak D, Střelcová K, Ditmarová L, Priwitzer T, Kmet’ J, Homolák M, Pichler V (2012) Physiological response of irrigated and non-irrigated Norway spruce trees as a consequence of drought in field conditions. Eur J For Res 131:1737–1746. doi:10.1007/s10342-012-0611-z

    Article  Google Scholar 

  • Lehtonen I, Venäläinen A, Kämäräinen M, Peltola H, Gregow H (2016) Risk of large-scale fires in boreal forests of Finland under changing climate. Nat Hazards Earth Syst Sci 16:239–253. doi:10.5194/nhess-16-239-2016

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. doi:10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  • Lindner M, Fitzgerald JB, Zimmermann N, Reyer C, Delzon S, van der Maaten E, Schelhaas MJ, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83. doi:10.1016/j.jenvman.2014.07.030

    Article  Google Scholar 

  • Liu Y, Dorigo W, Parinussa R, de Jeu R, Wagner W, McCabe M, Evans J, van Dijk A (2012) Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens Environ 123:280–297. doi:10.1016/j.rse.2012.03.014

    Article  Google Scholar 

  • Liu YY, Parinussa RM, Dorigo WA, De Jeu RAM, Wagner W, van Dijk AIJM, McCabe MF, Evans JP (2011) Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol Earth Syst Sci 15:425–436. doi:10.5194/hess-15-425-2011

    Article  Google Scholar 

  • Luomaranta A, Ruosteenoja K, Jylhä K, Gregow H, Haapala J, Laaksonen A (2014) Multimodel estimates of the changes in the Baltic Sea ice cover during the present century. Tellus A 66(22):617. doi:10.3402/tellusa.v66.22617

    Google Scholar 

  • Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95

    Article  Google Scholar 

  • Mueller B, Zhang X (2016) Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data. Clim Change 134:255–267. doi:10.1007/s10584-015-1499-7

    Article  Google Scholar 

  • Muukkonen P, Nevalainen S, Lindgren M, Peltoniemi M (2015) Spatial occurrence of drought-associated damages in Finnish boreal forests: results from forest condition monitoring and GIS analysis. Boreal Environ Res 20:172–180

    Google Scholar 

  • Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol Earth Syst Sci 17:1765–1781. doi:10.5194/hess-17-1765-2013

    Article  Google Scholar 

  • Pei L, Moore N, Zhong S, Kendall AD, Gao Z, Hyndman DW (2016) Effects of irrigation on summer precipitation over the United States. J Clim 29:3541–3558. doi:10.1175/JCLI-D-15-0337.1

    Article  Google Scholar 

  • Pennell C, Reichler T (2011) On the effective number of climate models. J Clim 24:2358–2367. doi:10.1175/2010JCLI3814.1

    Article  Google Scholar 

  • Potopová V, Boroneanţ C, Možný M, Soukup J (2015) Driving role of snow cover on soil moisture and drought development during the growing season in the Czech Republic. Int J Climatol 36:3741–3758. doi:10.1002/joc.4588

    Article  Google Scholar 

  • Pritchard OG, Hallett SH, Farewell TS (2015) Probabilistic soil moisture projections to assess Great Britain’s future clay-related subsidence hazard. Clim Change 133:635–650. doi:10.1007/s10584-015-1486-z

    Article  Google Scholar 

  • Räisänen J, Eklund J (2012) 21st century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. Clim Dyn 38:2575–2591. doi:10.1007/s00382-011-1076-3

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Giorgetta MEM, Hagemann S, Kirchner I, Manzini LKE, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Tech Rep 349, Max-Planck-Institut für Meteorologie, Hamburg

  • Roudier P, Andersson JCM, Donnelly C, Feyen L, Greuell W, Ludwig F (2016) Projections of future floods and hydrological droughts in Europe under a +2\(^\circ\)C global warming. Clim Change 135:341–355. doi:10.1007/s10584-015-1570-4

    Article  Google Scholar 

  • Rowell DP, Jones RG (2006) Causes and uncertainty of future summer drying over Europe. Clim Dyn 27:281–299. doi:10.1007/s00382-006-0125-9

    Article  Google Scholar 

  • Ruosteenoja K, Räisänen P (2013) Seasonal changes in solar radiation and relative humidity in Europe in response to global warming. J Clim 26:2467–2481. doi:10.1175/JCLI-D-12-00007.1

    Article  Google Scholar 

  • Ruosteenoja K, Räisänen J, Venäläinen A, Kämäräinen M (2016) Projections for the duration and degree days of the thermal growing season in Europe derived from CMIP5 model output. Int J Climatol 36:3039–3055. doi:10.1002/joc.4535

    Article  Google Scholar 

  • Scheff J, Frierson DMW (2015) Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J Clim 28:5583–5600. doi:10.1175/JCLI-D-14-00480.1

    Article  Google Scholar 

  • Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111:3245–3250. doi:10.1073/pnas.1222460110

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161. doi:10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Seneviratne SI, Wilhelm M, Stanelle T, van den Hurk B, Hagemann S, Berg A, Cheruy F, Higgins ME, Meier A, Brovkin V, Claussen M, Ducharne A, Dufresne JL, Findell KL, Ghattas J, Lawrence DM, Malyshev S, Rummukainen M, Smith B (2013) Impact of soil moisture-climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys Res Lett 40:5212–5217. doi:10.1002/grl.50956

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105. doi:10.1007/s00382-007-0340-z

    Article  Google Scholar 

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4:17–22. doi:10.1038/NCLIMATE2067

    Article  Google Scholar 

  • Trnka M, Brázdil R, Možný M, Štěpánek P, Dobrovolný P, Zahradníček P, Balek J, Semerádová D, Dubrovský M, Hlavinka P, Eitzinger J, Wardlow B, Svoboda M, Hayes M, Žalud Z (2015) Soil moisture trends in the Czech Republic between 1961 and 2012. Int J Climatol 35:3733–3747. doi:10.1002/joc.4242

    Article  Google Scholar 

  • Vajda A, Venäläinen A, Suomi I, Junila P, Mäkelä HM (2014) Assessment of forest fire danger in a boreal forest environment: description and evaluation of the operational system applied in Finland. Meteorol Appl 21:879–887. doi:10.1002/met.1425

    Article  Google Scholar 

  • Venäläinen A, Korhonen N, Hyvärinen O, Koutsias N, Xystrakis F, Urbieta IR, Moreno JM (2014) Temporal variations and change in forest fire danger in Europe for 1960–2012. Nat Hazards Earth Syst Sci 14:1477–1490. doi:10.5194/nhess-14-1477-2014

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Zhao T, Dai A (2015) The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario. J Clim 28:4490–4512. doi:10.1175/JCLI-D-14-00363.1

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Academy of Finland (the ADAPT and PLUMES projects, decisions 260785 and 278067, the FORBIO project of the Strategic Research Council and the Centre of Excellence, decision 272041), the Finnish Ministry of Agriculture and Forestry (the ILMAPUSKURI project) and the European Commission (the Life+ project MONIMET, Grant agreement LIFE12 ENV/FI000409). The CMIP5 GCM data were downloaded from the Earth System Grid Federation data archive (http://pcmdi9.llnl.gov) and the remotely-sensed soil moisture data from the Climate Change Initiative Phase 1 Soil Moisture Project of the European Space Agency (http://www.esa-cci.org/). The two unknown reviewers are thanked for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimmo Ruosteenoja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 9777 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruosteenoja, K., Markkanen, T., Venäläinen, A. et al. Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Clim Dyn 50, 1177–1192 (2018). https://doi.org/10.1007/s00382-017-3671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3671-4

Keywords

Navigation