Skip to main content

Advertisement

Log in

Observed modes of sea surface temperature variability in the South Pacific region

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ballester J, Rodríguez-Arias MA, Rodó X (2011) A new extratropical tracer describing the role of the Western Pacific in the onset of El Niño: implications for ENSO understanding and forecasting. J Clim 24:1425–1437

    Article  Google Scholar 

  • Barros VR, Silvestri GE (2002) The relation between sea surface temperature at the subtropical south-central Pacific and precipitation in southeastern South America. J Climate 15:251–267

    Article  Google Scholar 

  • Clem KR, Fogt RL (2015) South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J Geophys Res 120(7):2773–2792

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, and Coauthors (2011) The twentieth century reanalysis project. Q J R Meteor Soc 137:1–28

    Article  Google Scholar 

  • Da Silva GAM, Drumond A, Ambrizzi T (2011) The impact of El Niño on South American summer climate during different phases of the Pacific Decadal Oscillation. Theor Appl Climatol 106:307–319

    Article  Google Scholar 

  • Dong B, Dai A (2015) The influence of the Interdecadal Pacific Oscillation on temperature and precipitation over the globe. Clim Dyn 45:2667–2681

    Article  Google Scholar 

  • England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Sen Gupta A, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227

    Article  Google Scholar 

  • Gershunou A, Barnett TP, Cayan DR (1999) North Pacific interdecadal oscillation seen as factor in ENSO-related North American climate anomalies. Eos 80:25–30

    Article  Google Scholar 

  • Grimm AM, Barros VR, Doyle ME (2000) Climate variability in southern South America associated with El Niño and La Niña events. J Clim 13:35–58

    Article  Google Scholar 

  • Guan Y, Zhu J, Huang B, Hu ZZ, Kinter JL III (2014) South Pacific ocean dipole: a predictable mode on multiseasonal time scales. J Clim 27:1648–1658

    Article  Google Scholar 

  • Horel JD (1984) Complex empirical component analysis: theory and examples. J Clim Appl Meteorol 23:1660–1673

    Article  Google Scholar 

  • Huang B, Shukla J (2006) Interannual SST variability in the southern subtropical and extra-tropical ocean. In: Tech Rep 223, Center for Ocean-Land-Atmosphere Studies, Calverton, MD, 20 pp

  • Hurwitz MM, Newman PA, Garfinkel CI (2012) On the influence of North Pacific sea surface temperature on the Arctic winter climate. J Geophys Res Atmos 117:D19110

    Article  Google Scholar 

  • Jacques-Copper M, Garreaud RD (2015) Characterization of the 1970s climate shift in South America. Int J Climatol 35:2164–2179

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Karoly DJ, Plumb RA, Ting M (1989) Examples of the horizontal propagation of quasi-stationary waves. J Atmos Sci 46:2802–2811

    Article  Google Scholar 

  • Kendall M (1955) Rank correlation methods, 5th edn. Kendall M, J Gibbons J (eds) Oxford University Press, New York, p 260

    Google Scholar 

  • Kidson JW, Renwick JA (2002) The Southern Hemisphere evolution of ENSO during 1981–1999. J Climate 15:847–863

    Article  Google Scholar 

  • Latif M, Barnett TP (1994) Causes of decadal climate variability over the North Pacific and North America. Science 266:634–637

    Article  Google Scholar 

  • Lawrimore JH, Menne MJ, Gleason BE, Williams CN, Wuertz DB, Vose RS, Rennie J (2011) An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J Geophys Res D Atmos 116:1–18

    Article  Google Scholar 

  • Lienert F, Doblas-Reyes FJ (2013) Decadal prediction of interannual tropical and North Pacific sea surface temperature. J Geophys Res Atmos 118:5913–5922

    Article  Google Scholar 

  • Linsley BK, Wellington GM, Schrag DP, Ren L, Salinger MJ, Tudhope AW (2000) Geochemical evidence from corals for changes in the amplitude and spatial pattern of South Pacific interdecadal climate variability over the last 300 years. Clim Dyn 22:1–11

    Google Scholar 

  • Mann H (1945) Nonparametric tests against trends. Econometrica 13:245–259

    Article  Google Scholar 

  • Montecinos A, Pizarro O (2005) Interdecadal SST-SLP coupled variability in the South Pacific. J Geophys Res. doi:10.1029/2004JC002743

    Google Scholar 

  • Morioka Y, Ratnam JV, Sasaki W, Masumoto Y (2013) Generation mechanism of the South Pacific Subtropical Dipole. J Clim 26:6033–6045

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  • Peterson RG, White WB (1998) Slow oceanic teleconnections linking the Antarctic Circumpolar Wave with the tropical El Niño-Southern Oscillation. J Geophys Res 103:24573–24583

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324

    Article  Google Scholar 

  • Power S, Haylock M, Colman R, Wang X (2006) The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J Clim 19:4755–4771

    Article  Google Scholar 

  • Qiu B, Chen S (2006) Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: observations and causes. J Phys Ocean 36:1751–1762

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res D Atmos. doi:10.1029/2002JD002670.

    Google Scholar 

  • Renwick JA, Revell MJ (1999) Blocking over the South Pacific and Rossby wave propagation. Mon Weather Rev 127:2233–2247

    Article  Google Scholar 

  • Roemmich D, Gilson J, Sutton P, Zilberman N (2016) Multidecadal change of the South Pacific Gyre circulation. J Phys Ocean 46:1871–1883

    Article  Google Scholar 

  • Salinger MJ, Renwick JA, Mullan AB (2001) Interdecadal Pacific Oscillation and South Pacific climate. Int J Climatol 21:1705–1721

    Article  Google Scholar 

  • Sasaki YN, Minobe S, Schneider N, Kagimoto T, Nonaka M, Sasaki H (2008) Decadal sea level variability in the South Pacific in a global eddy-resolving ocean model hindcast. J Phys Ocean 38:1731–1747

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40

    Article  Google Scholar 

  • Shakun JD, Shaman J (2009) Tropical origins of North and South Pacific decadal variability. Geophys Res Lett 36:L19711

    Article  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to ENSO and Southern Annular Mode variability. J Geophys Res. doi:10.1029/2007JC004269

    Google Scholar 

  • Tatebe H, Imada Y, Mori M, Kimoto M, Hasumi H (2013) Control of decadal and bidecadal climate variability in the tropical Pacific by the off-equatorial South Pacific Ocean. J Climate 26:6524–6534

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Van Oldenborgh GJ, te Raa LA, Dijkstra HA, Philip SY (2009) Frequency-amplitude-dependence effect of the Atlantic meridional overturning on the tropical Pacific Ocean. Ocean Sci 5:293–301

    Article  Google Scholar 

  • Venegas SA, Mysak LA, Straub DN (1998) An interdecadal climate cycle in the South Atlantic and its links to other ocean basins. J Geophys Res 103:24723–24736

    Article  Google Scholar 

  • Wallace JM, Dickinson RE (1972) Empirical orthogonal representation of time series in the frequency domain. Part I: Theoretical considerations. J Appl Meteor 11:887–892

    Article  Google Scholar 

  • White WB, Annis J (2004) Influence of the Antarctic circumpolar wave on El Niño and its multidecadal changes from 1950 to 2011. J Geophys Res 109:C06019. doi:10.1029/2002JC001666

    Article  Google Scholar 

  • White WB, Peterson RG (1996) An Antarctic circumpolar wave in surface pressure, wind, temperature and sea ice extent. Nature 380:699–702

    Article  Google Scholar 

  • White WB, Chen S-C, Allan RJ, Stone RC (2002) Positive feedbacks between the Antarctic Circumpolar Wave and the global El Niño-Southern Oscillation Wave. J Geophys Res 107(C10):3165. doi:10.1029/2000JC000581

    Article  Google Scholar 

  • Wilks D (2011) Statistical methods in the atmospheric sciences. Academic, Elsevier

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Scott Power for his comments on an earlier version of the manuscript and the two anonymous reviewers whose suggestions led to a substantial improvement of the paper. This study was supported by Grants UBACyT-20020100100803, UBACyT-20020120300051, PIP-11220120100586 and the SPECS (GA 308378) EU-funded Project. JG-S was partially supported by the H2020-funded MSCA-IF-EF DPETNA project (GA No. 655339). The authors acknowledge the Red Española de Supercomputación (RES) and PRACE for awarding access to MareNostrum 3 at the Barcelona Supercomputing Center through the HiResClim project. The support of Virginie Guémas and Oriol Mula-Valls at the Barcelona Supercomputing Center is warmly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro I. Saurral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saurral, R.I., Doblas-Reyes, F.J. & García-Serrano, J. Observed modes of sea surface temperature variability in the South Pacific region. Clim Dyn 50, 1129–1143 (2018). https://doi.org/10.1007/s00382-017-3666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3666-1

Keywords

Navigation