Skip to main content
Log in

Non-Gaussian spatiotemporal simulation of multisite daily precipitation: downscaling framework

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Probabilistic regression approaches for downscaling daily precipitation are very useful. They provide the whole conditional distribution at each forecast step to better represent the temporal variability. The question addressed in this paper is: how to simulate spatiotemporal characteristics of multisite daily precipitation from probabilistic regression models? Recent publications point out the complexity of multisite properties of daily precipitation and highlight the need for using a non-Gaussian flexible tool. This work proposes a reasonable compromise between simplicity and flexibility avoiding model misspecification. A suitable nonparametric bootstrapping (NB) technique is adopted. A downscaling model which merges a vector generalized linear model (VGLM as a probabilistic regression tool) and the proposed bootstrapping technique is introduced to simulate realistic multisite precipitation series. The model is applied to data sets from the southern part of the province of Quebec, Canada. It is shown that the model is capable of reproducing both at-site properties and the spatial structure of daily precipitations. Results indicate the superiority of the proposed NB technique, over a multivariate autoregressive Gaussian framework (i.e. Gaussian copula).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AghaKouchak A (2014) Entropy–copula in hydrology and climatology. J Hydrometeorol 15(6):2176–2189.

    Article  Google Scholar 

  • AghaKouchak A, Bárdossy A, Habib E (2010) Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula. Adv Water Resour 33(6):624–634

    Article  Google Scholar 

  • Ashkar F, Ouarda TB (1996) On some methods of fitting the generalized Pareto distribution. J Hydrol 177(1):117–141

    Article  Google Scholar 

  • Bárdossy A (2006) Copula-based geostatistical models for groundwater quality parameters. Water Resour Res 42(11):W11416

    Article  Google Scholar 

  • Bárdossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44(7):W07412

    Article  Google Scholar 

  • Bárdossy A, Pegram GGS (2009) Copula based multisite model for daily precipitation simulation. Hydrol Earth Syst Sci 13(12):2299–2314

    Article  Google Scholar 

  • Bargaoui ZK, Bárdossy A (2015) Modeling short duration extreme precipitation patterns using copula and generalized maximum pseudo-likelihood estimation with censoring. Adv Water Resour 84:1–13

    Article  Google Scholar 

  • Ben Alaya MA, Chebana F, Ouarda T (2014) Probabilistic Gaussian copula regression model for multisite and multivariable downscaling. J Clim 27(9):3331–3347

    Article  Google Scholar 

  • Ben Alaya MA, Chebana F, Ouarda TB (2015) Probabilistic multisite statistical downscaling for daily precipitation using a Bernoulli-generalized Pareto multivariate autoregressive model. J Clim 28(6):2349–2364

    Article  Google Scholar 

  • Benestad RE, Hanssen-Bauer I, Chen D (2008) Empirical-statistical downscaling. World Scientific, Singapore

    Book  Google Scholar 

  • Bremnes JB (2004) Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mon Weather Rev 132(1):338–347

    Article  Google Scholar 

  • Buishand TA, Brandsma T (2001) Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling. Water Resour Res 37(11):2761–2776

    Article  Google Scholar 

  • Buishand TA, Brandsma T (1999) Dependence of precipitation on temperature at Florence and Livorno (Italy). Clim Res 12(1): 53–63

    Article  Google Scholar 

  • Cannon AJ (2008) Probabilistic multisite precipitation downscaling by an expanded Bernoulli-gamma density network. J Hydrometeorol 9(6):1284–1300

    Article  Google Scholar 

  • Cannon AJ (2011) Quantile regression neural networks: Implementation in R and application to precipitation downscaling. Comput Geosci 37(9):1277–1284

    Article  Google Scholar 

  • Cawley GC, Janacek GJ, Haylock MR, Dorling SR (2007) Predictive uncertainty in environmental modelling. Neural Netw 20(4):537–549

    Article  Google Scholar 

  • Chandler RE, Wheater HS (2002) Analysis of rainfall variability using generalized linear models: a case study from the west of Ireland. Water Resour Res 38(10):10–11

    Article  Google Scholar 

  • Chebana F, Ouarda TB (2011) Multivariate quantiles in hydrological frequency analysis. Environmetrics 22(1):63–78

    Article  Google Scholar 

  • Coe R, Stern R (1982) Fitting models to daily rainfall data. J Appl Meteorol 21(7):1024–1031

    Article  Google Scholar 

  • Conway D, Wilby R, Jones P (1996) Precipitation and air flow indices over the British Isles. Clim Res 7:169–183

    Article  Google Scholar 

  • Czado C, Brechmann EC, Gruber L (2013) Selection of vine copulas. Copulae in Mathematical and Quantitative Finance, Springer, Berlin 17–37

    Book  Google Scholar 

  • El Adlouni S, Bobée B, Ouarda T (2008) On the tails of extreme event distributions in hydrology. J Hydrol 355(1):16–33

    Article  Google Scholar 

  • Eum H-I, Gachon P, Laprise R, Ouarda T (2012) Evaluation of regional climate model simulations versus gridded observed and regional reanalysis products using a combined weighting scheme. Clim Dyn 38(7–8):1433–1457

    Article  Google Scholar 

  • Fang H-B, Fang K-T, Kotz S (2002) The meta-elliptical distributions with given marginals. J Multivariate Anal 82(1):1–16

    Article  Google Scholar 

  • Fasbender D, Ouarda TBMJ (2010) Spatial Bayesian model for statistical downscaling of AOGCM to minimum and maximum daily temperatures. J Clim 23(19):5222–5242

    Article  Google Scholar 

  • Friederichs P, Hense A (2007) Statistical downscaling of extreme precipitation events using censored quantile regression. Mon Weather Rev 135(6):2365–2378

    Article  Google Scholar 

  • Genest C, Chebana F (2015) Copula modeling in hydrologic frequency analysis. In: Singh VP (ed) Handbook of applied hydrology. McGraw-Hill, New York (in press)

    Google Scholar 

  • Genest C, Plante JF (2003) On Blest’s measure of rank correlation. Can J Stat 31(1):35–52

    Article  Google Scholar 

  • Giorgi F, Christensen J, Hulme M, Von Storch H, Whetton P, Jones R, Mearns L, Fu C, Arritt R, Bates B (2001) Regional climate information-evaluation and projections. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of Working Group to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Gräler B (2014) Modelling skewed spatial random fields through the spatial vine copula. Spatial Stat 10:87–102

    Article  Google Scholar 

  • Guerfi N, Assani AA, Mesfioui M, Kinnard C (2015) Comparison of the temporal variability of winter daily extreme temperatures and precipitations in southern Quebec (Canada) using the Lombard and copula methods. Int J Climatol 35:4237–4246

    Article  Google Scholar 

  • Harpham C, Wilby RL (2005) Multi-site downscaling of heavy daily precipitation occurrence and amounts. J Hydrol 312(1):235–255

    Article  Google Scholar 

  • Haylock MR, Cawley GC, Harpham C, Wilby RL, Goodess CM (2006) Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios. Int J Climatol 26(10):1397–1415

    Article  Google Scholar 

  • Hessami M, Gachon P, Ouarda TBMJ, St-Hilaire A (2008) Automated regression-based statistical downscaling tool. Environ Model Softw 23(6):813–834

    Article  Google Scholar 

  • Hobæk Haff I, Frigessi A, Maraun D (2015) How well do regional climate models simulate the spatial dependence of precipitation? An application of pair-copula constructions. J Geophys Res Atmos 120(7):2624–2646

    Article  Google Scholar 

  • Hofer M, Marzeion B, Mölg T (2012) Comparing the skill of different reanalyses and their ensembles as predictors for daily air temperature on a glaciated mountain (Peru). Clim Dyn 39(7–8):1969–1980

    Article  Google Scholar 

  • Jeong D, St-Hilaire A, Ouarda T, Gachon P (2012a) Comparison of transfer functions in statistical downscaling models for daily temperature and precipitation over Canada. Stoch Environ Res Risk A 26(5):633–653

    Article  Google Scholar 

  • Jeong DI, St-Hilaire A, Ouarda TBMJ, Gachon P (2012b) Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator. Clim Change 114(3–4):567–591

    Article  Google Scholar 

  • Jeong D, St-Hilaire A, Ouarda T, Gachon P (2013) A multivariate multi-site statistical downscaling model for daily maximum and minimum temperatures. Clim Res 54(2):129–148

    Article  Google Scholar 

  • Joe H (1997) Multivariate models and multivariate dependence concepts. CRC Press, Boca Raton

    Book  Google Scholar 

  • Khalili M, Van Nguyen VT, Gachon P (2013) A statistical approach to multi-site multivariate downscaling of daily extreme temperature series. Int J Climatol 33(1):15–32

    Article  Google Scholar 

  • Kleiber W, Katz RW, Rajagopalan B (2012) Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes. Water Resour Res 48(1):W01523

    Article  Google Scholar 

  • Lagarias JC, Reeds JA, Wright MH, Wright PE (1999) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  Google Scholar 

  • Lee T, Ouarda TB, Jeong C (2012) Nonparametric multivariate weather generator and an extreme value theory for bandwidth selection. J Hydrol 452:161–171

    Article  Google Scholar 

  • Lee T, Modarres R, Ouarda T (2013) Data-based analysis of bivariate copula tail dependence for drought duration and severity. Hydrol Process 27(10):1454–1463

    Article  Google Scholar 

  • Li C, Singh VP, Mishra AK (2013a) A bivariate mixed distribution with a heavy-tailed component and its application to single-site daily rainfall simulation. Water Resour Res 49(2):767–789

    Article  Google Scholar 

  • Li C, Singh VP, Mishra AK (2013b) Monthly river flow simulation with a joint conditional density estimation network. Water Resour Res 49(6):3229–3242

    Article  Google Scholar 

  • Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201(1–4):272–288

    Article  Google Scholar 

  • Mao G, Vogl S, Laux P, Wagner S, Kunstmann H (2015) Stochastic bias correction of dynamically downscaled precipitation fields for Germany through Copula-based integration of gridded observation data. Hydrol Earth Syst Sci 19(4):1787–1806

    Article  Google Scholar 

  • Mehrotra R, Sharma A (2009) Evaluating spatio-temporal representations in daily rainfall sequences from three stochastic multi-site weather generation approaches. Adv Water Resour 32(6):948–962

    Article  Google Scholar 

  • Mehrotra R, Sharma A (2006) A nonparametric stochastic downscaling framework for daily rainfall at multiple locations. J Geophys Res Atmos (1984–2012) 111:D15

    Google Scholar 

  • Mehrotra R, Sharma A, Cordery I (2004) Comparison of two approaches for downscaling synoptic atmospheric patterns to multisite precipitation occurrence. J Geophys Res Atmos (1984–2012) 109:D14

    Google Scholar 

  • Nelsen RB (2013) An introduction to copulas. Springer Science & Business Media, New York

    Google Scholar 

  • Oakes D (1982) A model for association in bivariate survival data. J R Stat Soc Ser B Methodol 44:414–422

    Google Scholar 

  • Ouarda, T. B. M. J., Labadie JW, Fontaine DG (1997) Indexed sequential hydrologic modeling for hydropower capacity estimation. J Am Water Resour Assoc 33(6):1337–1349

    Article  Google Scholar 

  • Requena AI, Flores I, Mediero L, Garrote L (2015) Extension of observed flood series by combining a distributed hydro-meteorological model and a copula-based model. Stoch Environ Res Risk Assess 30(5):1–16

    Google Scholar 

  • Salvadori G, De Michele C (2007) On the use of copulas in hydrology: theory and practice. J Hydrol Eng 12(4):369–380

    Article  Google Scholar 

  • Serinaldi F (2009a) A multisite daily rainfall generator driven by bivariate copula-based mixed distributions. J Geophys Res Atmos (1984–2012) 114:D10

    Google Scholar 

  • Serinaldi F (2009b) A multisite daily rainfall generator driven by bivariate copula-based mixed distributions. J Geophys Res Atmos 114:D10

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2014) Simulating daily rainfall fields over large areas for collective risk estimation. J Hydrol 512:285–302

    Article  Google Scholar 

  • Serinaldi F, Bárdossy A, Kilsby CG (2014) Upper tail dependence in rainfall extremes: would we know it if we saw it? Stoch Environ Res Risk Assess 29(4):1211–1233

    Article  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  Google Scholar 

  • Smith MS (2014) Copula modelling of dependence in multivariate time series. Int J Forecast 31(3):815–833

    Article  Google Scholar 

  • Song S, Singh VP (2010) Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stoch Environ Res Risk Assess 24(3):425–444

    Article  Google Scholar 

  • Srivastav RK, Simonovic SP (2014) Multi-site, multivariate weather generator using maximum entropy bootstrap. Clim Dyn 44(11–12):3431–3448

    Google Scholar 

  • Stephenson DB, Rupa Kumar K, Doblas-Reyes FJ, Royer JF, Chauvin F, Pezzulli S (1999) Extreme daily rainfall events and their impact on ensemble forecasts of the Indian monsoon. Mon Weather Rev 127(9):1954–1966

    Article  Google Scholar 

  • Stern R, Coe R (1984) A model fitting analysis of daily rainfall data. J R Stat Soc Ser A Gen 147:1–34

    Article  Google Scholar 

  • Vaz de Melo Mendes B, Leal RPC (2010) Portfolio management with semi-parametric bootstrapping. J Risk Manag Financ Inst 3(2):174–183

    Google Scholar 

  • Vernieuwe H, Vandenberghe S, De Baets B, Verhoest NE (2015) A continuous rainfall model based on vine copulas. Hydrol Earth Syst Sci Discuss 12(1):489–524

  • Vinod HD, López-de-Lacalle J (2009) Maximum entropy bootstrap for time series: the meboot R package. J Stat Softw 29(5):1–19

    Article  Google Scholar 

  • Wilks DS (2010) Use of stochastic weathergenerators for precipitation downscaling. Wiley Interdisciplinary Reviews. Clim Change 1(6):898–907

    Google Scholar 

  • Wilks DS, Wilby RL (1999) The weather generation game: a review of stochastic weather models. Prog Phys Geogr 23(3):329–357

    Article  Google Scholar 

  • Williams PM (1998) Modelling seasonality and trends in daily rainfall data. Adv Neural Inf Process Syst 10:985–991

    Google Scholar 

  • Yang C, Chandler RE, Isham VS, Wheater HS (2005) Spatial–temporal rainfall simulation using generalized linear models. Water Resour Res 41(11):1–13

    Article  Google Scholar 

  • Yee TW, Stephenson AG (2007) Vector generalized linear and additive extreme value models. Extremes 10(1–2):1–19

    Article  Google Scholar 

  • Yee TW, Wild C (1996) Vector generalized additive models. J R Stat Soc Ser B Methodol 58:481–493

    Google Scholar 

  • Zhang Q, Xiao M, Singh VP (2015) Uncertainty evaluation of copula analysis of hydrological droughts in the East River basin, China. Global Planet Change 129:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ben Alaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Alaya, M.A., Ouarda, T.B.M.J. & Chebana, F. Non-Gaussian spatiotemporal simulation of multisite daily precipitation: downscaling framework. Clim Dyn 50, 1–15 (2018). https://doi.org/10.1007/s00382-017-3578-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3578-0

Keywords

Navigation