Skip to main content

Advertisement

Log in

Influence of external forcings on abrupt millennial-scale climate changes: a statistical modelling study

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The last glacial period was punctuated by a series of abrupt climate shifts, the so-called Dansgaard–Oeschger (DO) events. The frequency of DO events varied in time, supposedly because of changes in background climate conditions. Here, the influence of external forcings on DO events is investigated with statistical modelling. We assume two types of simple stochastic dynamical systems models (double-well potential-type and oscillator-type), forced by the northern hemisphere summer insolation change and/or the global ice volume change. The model parameters are estimated by using the maximum likelihood method with the NGRIP \(\hbox {Ca}^{2+}\) record. The stochastic oscillator model with at least the ice volume forcing reproduces well the sample autocorrelation function of the record and the frequency changes of warming transitions in the last glacial period across MISs 2, 3, and 4. The model performance is improved with the additional insolation forcing. The BIC scores also suggest that the ice volume forcing is relatively more important than the insolation forcing, though the strength of evidence depends on the model assumption. Finally, we simulate the average number of warming transitions in the past four glacial periods, assuming the model can be extended beyond the last glacial, and compare the result with an Iberian margin sea-surface temperature (SST) record (Martrat et al. in Science 317(5837): 502–507, 2007). The simulation result supports the previous observation that abrupt millennial-scale climate changes in the penultimate glacial (MIS 6) are less frequent than in the last glacial (MISs 2–4). On the other hand, it suggests that the number of abrupt millennial-scale climate changes in older glacial periods (MISs 6, 8, and 10) might be larger than inferred from the SST record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The thresholds are set to \(y=\pm 0.4\) to be able to count the lowest interstadial event with \(y\sim 0.5\) (GI-4 in Rasmussen et al. (2014)) and the highest stadial event with \(y\sim -0.7\) (GS-22 in the same). These thresholds yield total 26 warming transitions during 11–100 ka BP. Similar criteria are used in (Alley et al. 2001; Ditlevsen et al. 2005).

  2. Schulz et al. (2002) assume that the North Atlantic THC is controlled by the freshwater flux anomaly (runoff from ice sheets) in proportion to the ice volume itself, referring to Marshall and Clarke (1999). However, in other studies, the freshwater flux is related to the loss of the ice volume (Knutti et al. 2004; Jackson et al. 2010).

  3. The 20-year average NGRIP \(\hbox {Ca}^{2+}\) record provided in Seierstad et al. (2014) has 26 missing values during 11–100 ka BP, which represent 0.6 % of the 4451 data points. We just interpolate them linearly for simplicity.

  4. The average period between successive warming transitions under stochastic noise is not determined by the eigenfrequency of the equilibrium point for the deterministic case. For the case of model A with \(F_\text{ext}=0\), the former period is \(\sim\)1700 years but the latter period is \(\sim\)1000 years.

  5. For instance, the time intervals between two subsequent data points are \(\sim\)170 year on average (with maximum 650 year) during the past 100 ka BP, but they are \(\sim\)480 year on average (with maximum 1640 year) during 100–400 ka BP.

References

  • Adams J, Maslin M, Thomas E (1999) Sudden climate transitions during the quaternary. Prog Phys Geogr 23(1):1–36

    Article  Google Scholar 

  • Ahn J, Brook EJ (2008) Atmospheric co2 and climate on millennial time scales during the last glacial period. Science 322(5898):83–85

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Alley R, Anandakrishnan S, Jung P (2001) Stochastic resonance in the north atlantic. Paleoceanography 16(2):190–198

    Article  Google Scholar 

  • Andrieu C, Doucet A, Holenstein R (2010) Particle markov chain monte carlo methods. J R Stat Soc Ser B (Stat Methodol) 72(3):269–342

    Article  Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10(4):297–317

    Article  Google Scholar 

  • Bigler M (2004) Hochauflösende spurenstoffmessungen an polaren eisbohrkernen: glazio-chemische und klimatische prozessstudien. Ph.D. thesis, Physics Institute. University of Bern, Switzerland

  • Bintanja R, van de Wal RS, Oerlemans J (2005) Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437(7055):125–128

    Article  Google Scholar 

  • Birchfield G, Broecker W (1990) A salt oscillator in the glacial atlantic? 2. A scale analysis model. Paleoceanography 5:835–843

    Article  Google Scholar 

  • Biscaye P, Grousset F, Revel M, Van der Gaast S, Zielinski G, Vaars A, Kukla G (1997) Asian provenance of glacial dust (stage 2) in the greenland ice sheet project 2 ice core, summit, greenland. J Geophys Res Oceans 102(C12):26,765–26,781

    Article  Google Scholar 

  • Braun H, Ditlevsen P, Chialvo DR (2008) Solar forced Dansgaard-Oeschger events and their phase relation with solar proxies. Geophys Res Lett 35:L06703. doi:10.1029/2008GL033414

    Article  Google Scholar 

  • Broecker WS, Peteet DM, Rind D (1985) Does the ocean-atmosphere system have more than one stable mode of operation? Nature 315(6014):21–26

    Article  Google Scholar 

  • Broecker WS, Bond G, Klas M, Bonani G, Wolfli W (1990) A salt oscillator in the glacial atlantic? 1. The concept. Paleoceanography 5(4):469–477

    Article  Google Scholar 

  • Byrd RH, Nocedal J, Schnabel RB (1994) Representations of quasi-newton matrices and their use in limited memory methods. Math Program 63(1–3):129–156

    Article  Google Scholar 

  • Capron E, Landais A, Chappellaz J, Schilt A, Buiron D, Dahl-Jensen D, Johnsen SJ, Jouzel J, Lemieux-Dudon B, Loulergue L et al (2010) Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period. Clim Past 6(3):345–365

    Article  Google Scholar 

  • Carson J, Crucifix M, Preston S, Wilkinson, RD (2015) Bayesian model selection for the glacial-interglacial cycle. arXiv:1511.03467

  • Cessi P (1994) A simple box model of stochastically forced thermohaline flow. J Phys Oceanogr 24(9):1911–1920

    Article  Google Scholar 

  • Chopin N, Jacob PE, Papaspiliopoulos O (2013) Smc2: an efficient algorithm for sequential analysis of state space models. J R Stat Soc Ser B (Stat Methodol) 75(3):397–426

    Article  Google Scholar 

  • Clement AC, Peterson LC (2008) Mechanisms of abrupt climate change of the last glacial period. Rev Geophys 46:RG4002. doi:10.1029/2006RG000204

    Article  Google Scholar 

  • Colin de Verdière A (2007) A simple model of millennial oscillations of the thermohaline circulation. J Phys Oceanogr 37(5):1142–1155

    Article  Google Scholar 

  • Crucifix M, Rougier J (2009) On the use of simple dynamical systems for climate predictions. Eur Phys J Spec Top 174(1):11–31

    Article  Google Scholar 

  • Dansgaard W, Johnsen S, Clausen H, Dahl-Jensen D, Gundestrup N, Hammer C, Hvidberg C, Steffensen J, Sveinbjörnsdottir A, Jouzel J et al (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–220

    Article  Google Scholar 

  • Denton GH, Alley RB, Comer GC, Broecker WS (2005) The role of seasonality in abrupt climate change. Quat Sci Rev 24(10):1159–1182

    Article  Google Scholar 

  • Ding Z, Liu T, Rutter NW, Yu Z, Guo Z, Zhu R (1995) Ice-volume forcing of east asian winter monsoon variations in the past 800,000 years. Quat Res 44(2):149–159

    Article  Google Scholar 

  • Ditlevsen PD (1999) Observation of \(\alpha\)-stable noise induced millennial climate changes from an ice-core record. Geophys Res Lett 26(10):1441–1444

    Article  Google Scholar 

  • Ditlevsen PD, Ditlevsen S, Andersen KK (2002) The fast climate fluctuations during the stadial and interstadial climate states. Ann Glaciol 35(1):457–462

    Article  Google Scholar 

  • Ditlevsen PD, Kristensen MS, Andersen KK (2005) The recurrence time of dansgaard-oeschger events and limits on the possible periodic component. J Clim 18:2594–2603

    Article  Google Scholar 

  • Ditlevsen PD, Andersen KK, Svensson A (2007) The do-climate events are probably noise induced: statistical investigation of the claimed 1470 years cycle. Clim Past 3(1):129–134

    Article  Google Scholar 

  • Elliot M, Labeyrie L, Duplessy JC (2002) Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10 ka). Quat Sci Rev 21(10):1153–1165

    Article  Google Scholar 

  • Fischer H, Siggaard-Andersen M-L, Ruth U, Röthlisberger R, Wolff E (2007) Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev Geophys 45:RG1002. doi:10.1029/2005RG000192

    Article  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445

    Article  Google Scholar 

  • Foster GL, Rohling EJ (2013) Relationship between sea level and climate forcing by co2 on geological timescales. Proc Natl Acad Sci 110(4):1209–1214

    Article  Google Scholar 

  • Friedrich T, Timmermann A, Menviel L, Elison Timm O, Mouchet A, Roche D (2010) The mechanism behind internally generated centennial-to-millennial scale climate variability in an earth system model of intermediate complexity. Geosci Model Dev 3(2):377–389

    Article  Google Scholar 

  • Fuhrer K, Wolff EW, Johnsen SJ (1999) Timescales for dust variability in the Greenland Ice Core Project (GRIP) ice core in the last 100,000 years. J Geophys Res Atmos 104(D24):31043–31052. doi:10.1029/1999JD900929

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409(6817):153–158

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S (2002) Abrupt glacial climate changes due to stochastic resonance. Phys Rev Lett 88(3):038,501

    Article  Google Scholar 

  • Gardiner C (2009) Stochastic methods: a handbook for the natural and social sciences, 4th edn. Springer, Berlin, Heidelberg

  • Gildor H, Tziperman E (2003) Sea-ice switches and abrupt climate change. Philos Trans R Soc Lond A Math Phys Eng Sci 361(1810):1935–1944

    Article  Google Scholar 

  • Hargreaves J, Annan J (2002) Assimilation of paleo-data in a simple earth system model. Clim Dyn 19(5–6):371–381

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194(4270):1121–1132

    Article  Google Scholar 

  • Jackson CS, Marchal O, Liu Y, Lu S, Thompson WG (2010) A box model test of the freshwater forcing hypothesis of abrupt climate change and the physics governing ocean stability. Paleoceanography 25:PA4222. doi:10.1029/2010PA001936

    Article  Google Scholar 

  • Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. Proc IEEE 92(3):401–422

    Article  Google Scholar 

  • Kageyama M, Paillard D (2005) Dansgaard–Oeschger events: an oscillation of the climate-ice-sheet system? Comptes Rendus Geosci 337(10):993–1000

    Article  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795

    Article  Google Scholar 

  • Keeling CD, Whorf TP (2000) The 1800-year oceanic tidal cycle: a possible cause of rapid climate change. Proc Natl Acad Sci 97(8):3814–3819

    Article  Google Scholar 

  • Knutti R, Flückiger J, Stocker T, Timmermann A (2004) Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature 430(7002):851–856

    Article  Google Scholar 

  • Kwasniok F (2013) Analysis and modelling of glacial climate transitions using simple dynamical systems. Philos Trans R Soc Lond A Math Phys Eng Sci 371(1991):20110,472

    Article  Google Scholar 

  • Kwasniok F, Lohmann G (2009) Deriving dynamical models from paleoclimatic records: application to glacial millennial-scale climate variability. Phys Rev E 80(6):066,104

    Article  Google Scholar 

  • Kwasniok F, Lohmann G (2012) A stochastic nonlinear oscillator model for glacial millennial-scale climate transitions derived from ice-core data. Nonlinear Process Geophys 19:595–603

    Article  Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia A, Levrard B (2004) A long-term numerical solution for the insolation quantities of the earth. Astron Astrophys 428(1):261–285

    Article  Google Scholar 

  • Li C, Battisti DS, Schrag DP, Tziperman E (2005) Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys Res Lett 32:L19702. doi:10.1029/2005GL023492

    Google Scholar 

  • Li Y, Su N, Liang L, Ma L, Yan Y, Sun Y (2015) Multiscale monsoon variability during the last two climatic cycles revealed by spectral signals in chinese loess and speleothem records. Clim Past 11(8):1067–1075

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic \(\delta \)18O records. Paleoceanography 20:PA1003. doi:10.1029/2004PA001071

    Google Scholar 

  • Livina VN, Kwasniok F, Lenton TM (2010) Potential analysis reveals changing number of climate states during the last 60 kyr. Clim Past 6(1):77–82

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean-atmosphere model. J Clim 1(9):841–866

    Article  Google Scholar 

  • Marshall SJ, Clarke GK (1999) Modeling north american freshwater runoff through the last glacial cycle. Quat Res 52(3):300–315

    Article  Google Scholar 

  • Martrat B, Grimalt JO, Lopez-Martinez C, Cacho I, Sierro FJ, Flores JA, Zahn R, Canals M, Curtis JH, Hodell DA (2004) Abrupt temperature changes in the western mediterranean over the past 250,000 years. Science 306(5702):1762–1765

    Article  Google Scholar 

  • Martrat B, Grimalt JO, Shackleton NJ, de Abreu L, Hutterli MA, Stocker TF (2007) Four climate cycles of recurring deep and surface water destabilizations on the iberian margin. Science 317(5837):502–507

    Article  Google Scholar 

  • Masson-Delmotte V, Jouzel J, Landais A, Stievenard M, Johnsen SJ, White J, Werner M, Sveinbjornsdottir A, Fuhrer K (2005) Grip deuterium excess reveals rapid and orbital-scale changes in greenland moisture origin. Science 309(5731):118–121

    Article  Google Scholar 

  • Mayewski PA, Meeker LD, Twickler MS, Whitlow S, Yang Q, Lyons WB, Prentice M (1997) Major features and forcing of high-atitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J Geophys Res Oceans 102(C12):26–345

    Article  Google Scholar 

  • McManus JF, Oppo DW, Cullen JL (1999) A 0.5-million-year record of millennial-scale climate variability in the north atlantic. Science 283(5404):971–975

    Article  Google Scholar 

  • Monahan AH (2006) The probability distribution of sea surface wind speeds. Part I: theory and seawinds observations. J Clim 19(4):497–520

    Article  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50(10):2061–2070

    Article  Google Scholar 

  • Olsen SM, Shaffer G, Bjerrum CJ (2005) Ocean oxygen isotope constraints on mechanisms for millennial-scale climate variability. Paleoceanography 20:PA1014. doi:10.1029/2004PA001063

    Article  Google Scholar 

  • Peavoy D, Franzke C (2010) Bayesian analysis of rapid climate change during the last glacial using greenland \(\delta\) 18 o data. Clim Past 6(6):787–794

    Article  Google Scholar 

  • Peltier WR, Vettoretti G (2014) Dansgaard–Oeschger oscillations predicted in a comprehensive model of glacial climate: a kicked salt oscillator in the Atlantic. Geophys Res Lett 41(20):7306–7313

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G et al (1999) Climate and atmospheric history of the past 420,000 years from the vostok ice core, Antarctica. Nature 399(6735):429–436

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org, ISBN 3-900051-07-0

  • Raftery AE (1995) Bayesian model selection in social research. Sociol Methodol 25:111–164

    Article  Google Scholar 

  • Raftery AE (1999) Bayes factors and bic. Sociol Methods Res 27(3):411–417

    Article  Google Scholar 

  • Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419(6903):207–214

    Article  Google Scholar 

  • Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H et al (2014) A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized greenland ice-core records: refining and extending the intimate event stratigraphy. Quat Sci Rev 106:14–28

    Article  Google Scholar 

  • Rial J, Saha R (2011) Modeling abrupt climate change as the interaction between sea ice extent and mean ocean temperature under orbital insolation forcing. AGU Geophys Monogr 193:57–74

    Google Scholar 

  • Rial J, Yang M (2007) Is the frequency of abrupt climate change modulated by the orbital insolation? Geophys Monogr Am Geophys Union 173:167–174

    Google Scholar 

  • Ruth U, Bigler M, Röthlisberger R, Siggaard-Andersen ML, Kipfstuhl S, Goto-Azuma K, Hansson ME, Johnsen SJ, Lu H, Steffensen JP (2007) Ice core evidence for a very tight link between north atlantic and east asian glacial climate. Geophys Res Lett 34(3)

  • Sakai K, Peltier W (1997) Dansgaard–Oeschger oscillations in a coupled atmosphere-ocean climate model. J Clim 10(5):949–970

    Article  Google Scholar 

  • Sakai K, Peltier WR (1999) A dynamical systems model of the dansgaard-oeschger oscillation and the origin of the bond cycle. J Clim 12(8):2238–2255

    Article  Google Scholar 

  • Schulz M (2002) On the 1470-year pacing of Dansgaard–Oeschger warm events. Paleoceanography 17(2):4–1

    Article  Google Scholar 

  • Schulz M (2002) The tempo of climate change during Dansgaard–Oeschger interstadials and its potential to affect the manifestation of the 1470-year climate cycle. Geophys Res Lett 29(1):2–1

    Article  Google Scholar 

  • Schulz M, Paul A, Timmermann A (2002) Relaxation oscillators in concert: a framework for climate change at millennial timescales during the late pleistocene. Geophys Res Lett 29(24):46–1

    Article  Google Scholar 

  • Seierstad IK, Abbott PM, Bigler M, Blunier T, Bourne AJ, Brook E, Buchardt SL, Buizert C, Clausen HB, Cook E et al (2014) Consistently dated records from the greenland grip, gisp2 and ngrip ice cores for the past 104 ka reveal regional millennial-scale \(\delta\) 18 o gradients with possible heinrich event imprint. Quat Sci Rev 106:29–46

    Article  Google Scholar 

  • Sima A, Paul A, Schulz M (2004) The younger dryasan intrinsic feature of late pleistocene climate change at millennial timescales. Earth Planet Sci Lett 222(3):741–750

    Article  Google Scholar 

  • Stommel H, Young W (1993) The average t-s relation of a stochastically forced box model. J Phys Oceanogr 23(1):151–158

    Article  Google Scholar 

  • Sun Y, Clemens SC, Morrill C, Lin X, Wang X, An Z (2012) Influence of atlantic meridional overturning circulation on the east asian winter monsoon. Nat Geosci 5(1):46–49

    Article  Google Scholar 

  • Thomas ZA, Kwasniok F, Boulton CA, Cox PM, Jones R, Lenton T, Turney C (2015) Early warnings and missed alarms for abrupt monsoon transitions. Clim Past 11(12):1621–1633

    Article  Google Scholar 

  • Timmermann A, Lohmann G (2000) Noise-induced transitions in a simplified model of the thermohaline circulation. J Phys Oceanogr 30(8):1891–1900

    Article  Google Scholar 

  • Trenberth KE (1984) Some effects of finite sample size and persistence on meteorological statistics. Part I: autocorrelations. Mon Weather Rev 112(12):2359–2368

    Article  Google Scholar 

  • Vélez-Belchí P, Alvarez A, Colet P, Tintoré J, Haney RL (2001) Stochastic resonance in the thermohaline circulation. Geophys Res Lett 28(10):2053–2056

    Article  Google Scholar 

  • Venables WN, Ripley BD (2013) Modern applied statistics with S-PLUS. Springer Science and Business Media, Berlin

    Google Scholar 

  • Wang Z, Mysak LA (2006) Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model. Paleoceanography 21(2):PA2001. doi:10.1029/2005PA001238

  • Winton M (1993) Deep decoupling oscillations of the oceanic thermohaline circulation. In: Richard Peltier W (ed) Ice in the climate system. Springer, Berlin, Heidelberg, pp 417–432

  • Wolff EW, Chappellaz J, Blunier T, Rasmussen SO, Svensson A (2010) Millennial-scale variability during the last glacial: the ice core record. Quat Sci Rev 29(21):2828–2838

    Article  Google Scholar 

  • Wunsch C (2006) Abrupt climate change: an alternative view. Quat Res 65(2):191–203

    Article  Google Scholar 

  • Zhang X, Lohmann G, Knorr G, Purcell C (2014) Abrupt glacial climate shifts controlled by ice sheet changes. Nature 512:290–294

    Article  Google Scholar 

Download references

Acknowledgments

We thank P. Ditlevsen, H. Goosse, M. Van Ginderachter, D. Kondrashov, and E. W. Wolff for helpful comments and suggestions. This work is supported by the Belgian Federal Science Policy Office under contract BR/12/A2/STOCHCLIM. MC is research scientist with the Belgian National Fund of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahito Mitsui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 90 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsui, T., Crucifix, M. Influence of external forcings on abrupt millennial-scale climate changes: a statistical modelling study. Clim Dyn 48, 2729–2749 (2017). https://doi.org/10.1007/s00382-016-3235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3235-z

Keywords

Navigation