Skip to main content

Advertisement

Log in

Predictability of global monsoon rainfall in NCEP CFSv2

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study evaluates the actual and potential prediction skill of the global monsoon rainfall using hindcast simulations by NCEP CFSv2 at zero to three lead forecast months (L0–L3). It is shown that the model has moderate skill in global monsoon rainfall (GMR) prediction, where the boreal summer monsoon rainfall forecast is more skillful than that of the austral summer. In general, the prediction skill of the GMR (actual and potential) increases with the decrease in lead forecast time, which is true for the all major regional monsoons, except the Australian monsoon. Over the Australian monsoon region, both actual and potential prediction skills in rainfall increase with increase in lead forecast. The forecast skill of tropical SST during austral summer is a maximum at 3 months lead forecast (i.e. July initial conditions) and that is associated with spring predictability barrier. Using partial least square (PLS) regression method, it is shown that the major predictor (first latent vector) of the boreal and austral summer monsoon rainfall variability is ENSO, and the influence of ENSO on rainfall variability is much stronger in the model as compared to the observation. The second PLS regression mode is associated with the non-ENSO variability like tropical Atlantic, Indian, subtropical northwest Pacific Ocean variability, midlatitude interactions etc. However, the model has very poor skill in reproducing the second mode, particularly during the boreal summer monsoon season. It is also shown that a significant part of the Indian summer monsoon rainfall variability is controlled by other than ENSO variability and the model has limited success in capturing that.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdi H (2010) Partial least square regression and projection on latent structure regression (PLS regression). Wiley Interdiscip Rev Comput Stat 2:97–106

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydro Meteorol 4:1147–1167

    Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112(C11):007. doi:10.1029/2006JC003,798

    Article  Google Scholar 

  • Carleton AM, Carpenter A, Weber PJ (1990) Mechanisms of interannual variability of the southwest United States summer rainfall maximum. J Clim 3:999–1015

    Article  Google Scholar 

  • Chaudhari HS, Pokhrel S, Mohanty S, Saha SK (2013) Seasonal prediction of Indian summer monsoon in NCEP coupled and uncoupled model. Theor Appl Climatol. doi:10.1007/s00704-013-0854-8

    Google Scholar 

  • Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New Jersey

    Google Scholar 

  • Delsole T (2004) Predictability and information theory. Part I: measures of predictability. J Atmos Sci 61:2425–2440

    Article  Google Scholar 

  • Delsole T (2005) Predictability and information theory. Part II: imperfect forecasts. J Atmos Sci 62:3368–3381

    Article  Google Scholar 

  • Delsole T, Tippett MK (2007) Predictability: recent insight from information theory. Rev Geophys 45:RG4002. doi:10.1029/2006RG000,202

    Article  Google Scholar 

  • Duan W, Wei C (2013) The ‘spring predictability barrier’ for ENSO predictions and its possible mechanism: results from a fully coupled model. Int J Climatol 33:1280–1292

    Article  Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102:929–945

    Article  Google Scholar 

  • Folland CK, Palmer TN, Parker DE (1986) Sahel rainfall and worldwide sea temperature. Nature 320:602–607

    Article  Google Scholar 

  • Hahn DG, Shukla J (1976) An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J Atmos Sci 33:2461–2462

    Article  Google Scholar 

  • Harris IPDJ, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 57 Dataset. Int J Climatol 34:623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  • Hazra A, Chaudhari HS, Rao AS, Goswami BN, Dhakate A, Pokhrel S, Saha SK (2015) Impact of revised cloud microphysical scheme in CFSv2 on the simulation of the Indian summer monsoon. Int J Climatol. doi:10.1002/joc.4320

    Google Scholar 

  • Hendon HH, Lim E, Wheeler MC (2011) Seasonal prediction of Australian monsoon rainfall. In: Chang CP, Ding Y, Lau N, Johnson R, Wang B, Yasunari T (eds) The global monsoon system research and forecast, 2nd edn. World Scientific, Singapore, pp 73–83

    Chapter  Google Scholar 

  • Hsu P, Li T, Wang B (2011) Trends in global monsoon area and precipitation over past 30 years. Geophys Res Lett 30(L08):701. doi:10.1029/2011GL046,893

    Google Scholar 

  • Huang R, Wu Y (1989) The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci 6:21–32

    Article  Google Scholar 

  • Jones CL, Carvalho MV, Higgins RW, Waliser DE, Schemm JKE (2004) Climatology of tropical intraseasonal convective anomalies. J Clim 17:523–539

    Article  Google Scholar 

  • Kang IS, Shukla J (2006) Dynamic seasonal prediction and predictability of the monsoon. In: Wang B (ed) The Asian monsoon. Praxis, Springer, Heidelberg, pp 585–612

    Chapter  Google Scholar 

  • Kirtman BP, Min D (2009) Multimodel ensemble ENSO prediction with CCSM and CFS. Mon Weather Rev 137:2908–2930

    Article  Google Scholar 

  • Kleeman R (2002) Measuring dynamical prediction utility using relative entropy. J Atmos Sci 59:2057–2072

    Article  Google Scholar 

  • Kosakaa Y, Xie SP, Laud NC, Vecchi GA (2013) Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc Natl Acad Sci USA 110:7574–7579

    Article  Google Scholar 

  • Kripalani RH, Oh JH, Chaudhari HS (2007) Response of the East Asian summer monsoon to doubled atmospheric CO2: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 87:1–28

    Article  Google Scholar 

  • Krishnan R, Kumar V, Sugi M, Yoshimura J (2009) Internal-feedbacks from monsoon-midlatitude interactions during droughts in the Indian summer monsoon. J Atmos Sci 66:553–578

    Article  Google Scholar 

  • Kumar A, Peng P, Chen M (2014) Is there a relationship between potential and actual skill? Mon Weather Rev 142:2220–2227

    Article  Google Scholar 

  • Laing AG, Fritsch JM (2000) The large-scale environments of the global populations of mesoscale convective complexes. Mon Weather Rev 128:2756–2776

    Article  Google Scholar 

  • Lamb PJ, Peppler RA (1991) Teleconnections linking worldwide climate anomalies. Cambridge University Press, Cambridge

    Google Scholar 

  • Lau KM, Li MT (1984) The monsoon over East Asia and its global association—a survey. Bull Am Meteorol Soc 65:116–125

    Article  Google Scholar 

  • Liang J, Yang S, Hu ZZ, Huang B, Kumar A, Zhang Z (2009) Predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP CFS. Clim Dyn 32:989–1001

    Article  Google Scholar 

  • Liebmann B, Mechoso CR (2011) The South American monsoon system. In: Chang C-P, Ding Y, Lau N-C (eds) The global monsoon system: research and forecast. World Scientific, Singapore, pp 137–157

    Chapter  Google Scholar 

  • Lindesay JA (1988) South African rainfall, the Southern Oscillation and a Southern Hemisphere semi-annual cycle. J Clim 8:17–30

    Article  Google Scholar 

  • Liu J, Wang B, Ding Q, Kuang X, Soon W, Zorita E (2009) Centennial variations of the global monsoon precipitation in the last millennium: results from ECHO-G model. J Clim 22:2356–2371

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Madden RA, Julian PR (1994) Observations of the 40–50 day tropical oscillation—a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Peng P, Zhang Q, Kumar A, van den Dool H, Wang W, Saha S, Pan H (2004) Variability, predictability, and prediction of djf climate in ncep coupled forecast system (CFS). In: Proceedings of the 29th climate prediction and diagnostics workshop, Madison

  • Pokhrel S, Chaudhari HS, Saha SK, Dhakate A, Yadav RK, Salunke K, Mahapatra S, Rao SA (2012a) ENSO, IOD and Indian Summer Monsoon in NCEP climate forecast system. Clim Dyn 39:2143–2165

    Article  Google Scholar 

  • Pokhrel S, Rahaman H, Parekh A, Saha SK, Dhakate A, Chaudhari HS, Gairola RM (2012b) Evaporation-precipitation variability over Indian Ocean and its assessment in NCEP Climate Forecast System (CFSv2). Clim Dyn 39:2585–2608

    Article  Google Scholar 

  • Pokhrel S, Dhakate A, Chaudhari HS, Saha SK (2013) Status of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon. Theor Appl Climatol 111:65–78

    Article  Google Scholar 

  • Pokhrel S, Saha SK, Dhakate A, Rahman H, Chaudhari HS, Salunke K, Hazra A, Sujith K, Sikka DR (2015) Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error. Clim Dyn. doi:10.1007/s00382-015-2703-1

    Google Scholar 

  • Ramage CS (1971) Monsoon meteorology. International geophysics series. Academic Press, San Diego

    Google Scholar 

  • Rao VB, Hada K (1990) Characteristics of rainfall over Brazil: annual variations and connections with the Southern Oscillation. Theor Appl Climatol 42:81–91

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite sst analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Rodrigues LRL, Garcia-Serrano J, Doblas-Reyes F (2013) Seasonal prediction of the intraseasonal variability of the West African monsoon precipitation. Fsica de la Tier 25:73–87

    Google Scholar 

  • Rowell DP (1998) Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulation. J Clim 11:109–120

    Article  Google Scholar 

  • Rowell DP, Folland CK, Maskell K, Ward MN (1995) Variability of summer rainfall over tropical North Africa (1906–92): observations and modeling. Q J R Meteorol Soc 121:669–704

    Google Scholar 

  • Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang HMH, Sela J, Iredell M, Treadon R, Kleist D, Delst PV, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Dool HVD, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Pan HL, Wang J, Nadiga S, Tripp P, Behringer D, Hou YT, Chuang HY, Iredell M, Ek M, Meng J, Yang R, Mensez MP, Dool HVD, Zhang Q, Wang W, Chen M, Becker E (2014a) The NCEP climate forecast system version 2. J Clim 27:2185–2208

    Article  Google Scholar 

  • Saha SK, Pokhrel S, Chaudhari HS (2013) Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun. Clim Dyn 41:1801–1815

    Article  Google Scholar 

  • Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, Sabeerali CT, Salunke K, Hazra A, Mahaptra S, Rao AS, (2014) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Climatol 35:1628–1641

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian ocean. Nature 401:360–363

    Google Scholar 

  • Samelson RG, Tziperman E (2001) Instability of the chaotic ENSO: the growth-phase predictability barrier. J Atmos Sci 58:3613–3625

    Article  Google Scholar 

  • Scheffe H (1959) The analysis of variance. Wiley, New York

    Google Scholar 

  • Schneider EK, Lindzen RS (1977) Axially symmetric steady state models of the basic state of instability and climate studies. Part I: linearized calculations. J Atmos Sci 34:263–279

    Article  Google Scholar 

  • Schneider T, Griffies SM (1999) A conceptual framework for predictability studies. J Clim 12:3133–3155

    Article  Google Scholar 

  • Shukla J (1981) Dynamical predictability of monthly means. J Atmos Sci 38:2547–2572

    Article  Google Scholar 

  • Shukla J (1998) Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282:728–731

    Article  Google Scholar 

  • Smith TM, Reynolds R, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Smoliak BV, Wallace JM, Stoelinga MT, Mitchell TP (2010) Application of partial least square regression to the diagnosis of year-to-year variations in Pacific northwest snowpack. Geophys Res Lett 37(L03):801. doi:10.1029/2009GL041,478

    Google Scholar 

  • Srivastava AK, Rajeevan M, Kulkarni R (2002) Teleconnection of OLR and SST anomalies over Atlantic Ocean with Indian summer monsoon. Geophys Res Lett 29:L1284. doi:10.1029/2001GL013,837

    Google Scholar 

  • Tang Y, Kleeman R, Moore AM (2008) Comparison of information-based measures of forecast uncertainty in ensemble. J Clim 21:230–247

    Article  Google Scholar 

  • Tang Y, Chen D, Yan X (2014) Potential predictability of North American surface temperature. Part I: information-based versus signal-to-noise-based metrics. J Clim 27:1578–1599

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon as seen through the divergent atmospheric circulation. J Clim 13:3969–3993

    Article  Google Scholar 

  • Wang B, Ding Q (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Ocean 44:165–183

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacificeast Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Wu Z, Li J, Liu J, Chang CP, Ding Y, Wu G (2008) How to measure the strength of the East Asian summer monsoon. J Clim 21:4449–4463

    Article  Google Scholar 

  • Wang B, Liu J, Kim H, Webster PJ, Yim S (2012) Recent change of the global monsoon precipitation (1979–2008). Clim Dyn 39:1123–1135

    Article  Google Scholar 

  • Wang B, Liu J, Kim H, Webster PJ, Yim S, Xiang B (2013a) Northern hemisphere summer monsoon intensified by mega-El Niño/Southern Oscillation and atlantic multidecadal oscillation. Proc Natl Acad Sci USA 110:5347–5352

    Article  Google Scholar 

  • Wang B, Xiang B, Lee J (2013b) Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc Natl Acad Sci USA 110:2718–2722

    Article  Google Scholar 

  • Webster PJ (1998) The annual cycle and the predictability of the tropical coupled ocean–atmosphere system. Meteorol Atmos Phys 56:33–55

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926

    Article  Google Scholar 

  • Webster PJ, Magaa VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processesp, redictability, and the prospects for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Westra S, Sharma A (2010) An upper limit to seasonal rainfall predictability? J Clim 23:3332–3351

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Yang D, Tang Y, Zhang Y, Yang X (2012) Information-based potential predictability of the Asian summer monsoon in a coupled model. J Geophys Res 117:D03119. doi:10.1029/2011JD016,775

    Google Scholar 

  • Yang S, Zhang Z, Kousky VE, Higgins RW, Yoo SH, Liang J, Fan Y (2008) Simulations and seasonal prediction of the Asian summer monsoon in the NCEP climate forecast system. J Clim 21:3755–3775

    Article  Google Scholar 

  • Yang S, Jiang Y, Zheng D, Higgins RW, Zhang Q, Kousky VE, Wen M (2009) Variations of U.S. regional precipitation and simulations by the NCEP CFS: focus on the southwest. J Clim 22:3211–3231

    Article  Google Scholar 

  • Yihui D, Chan JCL (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys 89:117–142

    Article  Google Scholar 

  • Yoo H, Li Z, Hou YT, Lord S, Weng F, Barker HW (2013) Diagnosis and testing of low-level cloud parameterizations for the NCEP/GFS model using satellite and ground-based measurements. Clim Dyn 41:1595–1613

    Article  Google Scholar 

  • Zhang S, Wang B (2008) Global summer monsoon rainy seasons. Int J Climatol 28:1563–1578

    Article  Google Scholar 

  • Zhisheng A, Guoxiong W, Jianping L, Youbin S, Yimin L, Weijian Z, Yanjun C, Anmin D, Li L, Jiangyu M, Hai C, Zhengguo S, Liangcheng T, Hong Y, Hong A, Hong C, Juan F (2015) Global monsoon dynamics and climate change. Ann Rev Earth Planet Sci 43:29–77

    Article  Google Scholar 

  • Zuo Z, Yang S, Hu ZZ, Zhang R, Wang W, Huang B, Wang F (2013) Predictable patterns and predictive skills of monsoon precipitation in Northern Hemisphere summer in NCEP CFSv2 reforecasts. Clim Dyn 40:3071–3088

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Director, IITM for the all support to carry out this work. We thank NCEP for providing CFS hindcast data and H. Abdi for providing code of PLS regression. We also thank John M. Wallace, Brian V. Smoliak for scientific discussion and providing snowpack data for code verification. We also thank two anonymous reviewers for their constructive comments and suggestions, which has improved the manuscript. Freeware GrADS is used extensively in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Kumar Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S.K., Sujith, K., Pokhrel, S. et al. Predictability of global monsoon rainfall in NCEP CFSv2. Clim Dyn 47, 1693–1715 (2016). https://doi.org/10.1007/s00382-015-2928-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2928-z

Keywords

Navigation