Skip to main content

Advertisement

Log in

Irrigation as an historical climate forcing

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multi-model assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barnston AG, Schickedanz PT (1984) The effect of irrigation on warm season precipitation in the southern Great Plains. J Clim Appl Meteorol 23(6):865–888. doi:10.1175/1520-0450(1984)023<0865:TEOIOW>2.0.CO;2

    Article  Google Scholar 

  • Bellouin N, Mann GW, Woodhouse MT, Johnson C, Carslaw KS, Dalvi M (2013) Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model. Atmos Chem Phys 13(6):3027–3044. doi:10.5194/acp-13-3027-2013

    Article  Google Scholar 

  • Boisier JP, de Noblet-Ducoudré N, Pitman AJ, Cruz FT, Delire C, van den Hurk BJJM, van der Molen MK, Müller C, Voldoire A (2012) Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: results from the first LUCID set of simulations. J Geophys Res Atmos 117(D12). doi:10.1029/2011JD017106

  • Bonfils C, Lobell D (2007) Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc Natl Acad Sci 104(34):13,582–13,587. doi:10.1073/pnas.0700144104

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484(7393):228–232. doi:10.1038/nature10946

    Article  Google Scholar 

  • Boucher O, Myhre G, Myhre A (2004) Direct human influence of irrigation on atmospheric water vapour and climate. Clim Dyn 22(6):597–603. doi:10.1007/s00382-004-0402-4

    Google Scholar 

  • Chen F, Xie Z (2012) Effects of crop growth and development on regional climate: a case study over East Asian monsoon area. Clim Dyn 38(11–12):2291–2305. doi:10.1007/s00382-011-1125-y

    Article  Google Scholar 

  • Cook BI, Puma MJ, Krakauer NY (2011) Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim Dyn 37(7–8):1587–1600. doi:10.1007/s00382-010-0932-x

    Article  Google Scholar 

  • DeAngelis A, Dominguez F, Fan Y, Robock A, Kustu MD, Robinson D (2010) Evidence of enhanced precipitation due to Irrigation over the Great Plains of the United States. J Geophys Res Atmos 115. doi:10.1029/2010JD013892

  • Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678. doi:10.1126/science.1118160

    Article  Google Scholar 

  • Federer CA, Vörösmarty C, Fekete B (2003) Sensitivity of annual evaporation to soil and root properties in two models of contrasting complexity. J Hydrometeorol 4:1276–1290. doi:10.1175/1525-7541(2003)004<1276:SOAETS>2.0.CO;2

    Article  Google Scholar 

  • Freydank K, Siebert S (2008) Towards mapping the extent of irrigation in the last century: time series of irrigated area per country. Technical report 8. Institute of Physical Geography, University of Frankfurt, Frankfurt

  • Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn 39(6):1329–1348. doi:10.1007/s00382-011-1252-5

    Article  Google Scholar 

  • Hansen JE, Sato M, Ruedy R, Kharecha P, Lacis A, Miller R, Nazarenko L, Lo K, Schmidt GA, Russell G et al (2007) Climate simulations for 1880–2003 with GISS modelE. Clim Dyn 29(7):661–696. doi:10.1007/s00382-007-0255-8

    Article  Google Scholar 

  • He B, Bao Q, Li J, Wu G, Liu Y, Wang X, Sun Z (2013) Influences of external forcing changes on the summer cooling trend over East Asia. Clim Change 117(4):829–841. doi:10.1007/s10584-012-0592-4

    Article  Google Scholar 

  • Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res Atmos 117(D5). doi:10.1029/2011JD017139

  • Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature. doi:10.1038/nature12534

  • Koster RD, Sud YC, Guo Z, Dirmeyer PA, Bonan G, Oleson KW, Chan E, Verseghy D, Cox P, Davies H, Kowalczyk E, Gordon CT, Kanae S, Lawrence D, Liu P, Mocko D, Lu CH, Mitchell K, Malyshev S, McAvaney B, Oki T, Yamada T, Pitman A, Taylor CM, Vasic R, Xue Y (2006) GLACE: the global land–atmosphere coupling experiment. Part I: Overview. J Hydrometeorol 7(4):590–610. doi:10.1175/JHM510.1

    Article  Google Scholar 

  • Kueppers L, Snyder M, Sloan L (2007) Irrigation cooling effect: regional climate forcing by land-use change. Geophys Res Lett 34:1–5. doi:10.1029/2006GL028679

  • Kumar S, Dirmeyer PA, Merwade V, DelSole T, Adams JM, Niyogi D (2013) Land use/cover change impacts in CMIP5 climate simulations: a new methodology and 21st century challenges. J Geophys Res Atmos 118(12):6337–6353. doi:10.1002/jgrd.50463

    Article  Google Scholar 

  • Levis S, Sacks W (2011) Technical descriptions of the interactive crop management (CLM4CNcrop) and interactive irrigation models in version 4 of the Community Land Model. Technical report, National Center for Atmospheric Research

  • Lo MH, Famiglietti JS (2013) Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys Res Lett 40(2):301–306. doi:10.1002/grl.50108

    Article  Google Scholar 

  • Lobell DB, Bala G, Duffy PB (2006) Biogeophysical impacts of cropland management changes on climate. Geophys Res Lett 33(6). doi:10.1029/2005GL025492

  • Luyssaert S, Jammet M, Stoy PC, Estel S, Pongratz J, Ceschia E, Churkina G, Don A, Erb K, Ferlicoq M, Gielen B, Grunwald T, Houghton RA, Klumpp K, Knohl A, Kolb T, Kuemmerle T, Laurila T, Lohila A, Loustau D, McGrath MJ, Meyfroidt P, Moors EJ, Naudts K, Novick K, Otto J, Pilegaard K, Pio CA, Rambal S, Rebmann C, Ryder J, Suyker AE, Varlagin A, Wattenbach M, Dolman AJ (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat Clim Change 4(5):389–393. doi:10.1038/nclimate2196

    Article  Google Scholar 

  • Mahmood R, Keeling T, Foster SA, Hubbard KG (2013a) Did irrigation impact 20th century air temperature in the High Plains aquifer region? Appl Geogr 38:11–21. doi:10.1016/j.apgeog.2012.11.002

    Article  Google Scholar 

  • Mahmood R, Pielke RA, Hubbard KG, Niyogi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltrán-Przekurat A, Baker B, McNider R, Legates DR, Shepherd M, Du J, Blanken PD, Frauenfeld OW, Nair US, Fall S (2013b) Land cover changes and their biogeophysical effects on climate. Int J Climatol. doi:10.1002/joc.3736

  • Meehl GA, Moss R, Taylor KE, Eyring V, Stouffer RJ, Bony S, Stevens B (2014) Climate model intercomparisons: preparing for the next phase. Eos Trans Am Geophys Union 95(9):77–78. doi:10.1002/2014EO090001

    Article  Google Scholar 

  • Miller RL, Schmidt GA, Nazarenko LS, Tausnev N, Bauer SE, DelGenio AD, Kelley M, Lo KK, Ruedy R, Shindell DT et al (2014) CMIP5 historical simulations (1850–2012) with GISS ModelE2. J Adv Model Earth Syst. doi:10.1002/2013MS000266

  • Nazarenko L, Menon S (2005) Varying trends in surface energy fluxes and associated climate between 1960 and 2002 based on transient climate simulations. Geophys Res Lett 32(22). doi:10.1029/2005GL024089

  • Pielke RA, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdiscip Rev Clim Change 2(6):828–850. doi:10.1002/wcc.144

    Article  Google Scholar 

  • Pitman AJ, de Noblet-Ducoudré N, Cruz FT, Davin EL, Bonan GB, Brovkin V, Claussen M, Delire C, Ganzeveld L, Gayler V, van den Hurk BJJM, Lawrence PJ, van der Molen MK, Müller C, Reick CH, Seneviratne SI, Strengers BJ, Voldoire A (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 36(14). doi:10.1029/2009GL039076

  • Puma MJ, Cook BI (2010) Effects of irrigation on global climate during the 20th century. J Geophys Res Atmos 115. doi:10.1029/2010JD014122

  • Qian Y, Giorgi F (2000) Regional climatic effects of anthropogenic aerosols? The case of southwestern China. Geophys Res Lett 27(21):3521–3524. doi:10.1029/2000GL011942

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002. doi:10.1038/nature08238

    Article  Google Scholar 

  • Russell GL, Miller JR, Rind D (1995) A coupled atmosphere–ocean model for transient climate change studies. Atmos–Ocean 33:683–730

    Google Scholar 

  • Sacks WJ, Cook BI, Buenning N, Levis S, Helkowski JH (2009) Effects of global irrigation on the near-surface climate. Clim Dyn 33(2):159–175. doi:10.1007/s00382-008-0445-z

    Article  Google Scholar 

  • Santer BD, Painter JF, Bonfils C, Mears CA, Solomon S, Wigley TML, Gleckler PJ, Schmidt GA, Doutriaux C, Gillett NP, Taylor KE, Thorne PW, Wentz FJ (2013) Human and natural influences on the changing thermal structure of the atmosphere. Proc Natl Acad Sci. doi:10.1073/pnas.1305332110

  • Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci 109(24):9320–9325. doi:10.1073/pnas.1200311109

    Article  Google Scholar 

  • Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL et al (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6(1):141–184. doi:10.1002/2013MS000265

    Article  Google Scholar 

  • Seneviratne SI, Wilhelm M, Stanelle T, van den Hurk B, Hagemann S, Berg A, Cheruy F, Higgins ME, Meier A, Brovkin V, Claussen M, Ducharne A, Dufresne JL, Findell KL, Ghattas J, Lawrence DM, Malyshev S, Rummukainen M, Smith B (2013) Impact of soil moisture–climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys Res Lett. doi:10.1002/grl.50956

  • Shukla SP, Puma MJ, Cook BI (2013) The response of the South Asian summer monsoon circulation to intensified irrigation in global climate model simulations. Clim Dyn 1–16. doi:10.1007/s00382-013-1786-9

  • Siebert S, Döll P, Feick S, Hoogeveen J (2005a) Global map of irrigated areas version 2.2. Technical report, Johann Wolfgang Goethe University, Frankfurt

  • Siebert S, Döll P, Hoogeveen J, Faures JM, Frenken K, Feick S (2005) Development and validation of the global map of irrigation areas. Hydrol Earth Syst Sci 9(5):535–547. doi:10.5194/hess-9-535-2005

    Article  Google Scholar 

  • Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation—a global inventory. Hydrol Earth Syst Sci 14(10):1863–1880. doi:10.5194/hess-14-1863-2010

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Vörösmarty CJ, Federer CA, Schloss AL (1998) Potential evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling. J Hydrol 207(3–4):147–169. doi:10.1016/S0022-1694(98)00109-7

    Article  Google Scholar 

  • Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20). doi:10.1029/2010GL044571

  • Wisser D, Frolking S, Douglas EM, Fekete BM, Vörösmarty CJ, Schumann AH (2008) Global irrigation water demand: variability and uncertainties arising from agricultural and climate data sets. Geophys Res Lett 35(24). doi:10.1029/2008GL035296

  • Wisser D, Fekete BM, Vorosmarty CJ, Schumann A (2010) Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol Earth Syst Sci 14:1–24. doi:10.5194/hess-14-1-2010

    Article  Google Scholar 

Download references

Acknowledgments

Simulations with the GISS ModelE2-R were made possible by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. Development of ModelE2-R was supported by the NASA Modeling, Analysis and Prediction (MAP) Program. Funding support for BIC provided by NASA. The authors gratefully acknowledge funding for Interdisciplinary Global Change Research under NASA cooperative agreement NNX08AJ75A supported by the NASA Climate and Earth Observing Program. Two anonymous reviewers provided valuable comments that improved the quality of this manuscript. LDEO Publication number #. Lamont contribution #7808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin I. Cook.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, B.I., Shukla, S.P., Puma, M.J. et al. Irrigation as an historical climate forcing. Clim Dyn 44, 1715–1730 (2015). https://doi.org/10.1007/s00382-014-2204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2204-7

Keywords

Navigation