Skip to main content

Advertisement

Log in

Effects of global irrigation on the near-surface climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Irrigation delivers about 2,600 km3 of water to the land surface each year, or about 2% of annual precipitation over land. We investigated how this redistribution of water affects the global climate, focusing on its effects on near-surface temperatures. Using the Community Atmosphere Model (CAM) coupled to the Community Land Model (CLM), we compared global simulations with and without irrigation. To approximate actual irrigation amounts and locations as closely as possible, we used national-level census data of agricultural water withdrawals, disaggregated with maps of croplands, areas equipped for irrigation, and climatic water deficits. We further investigated the sensitivity of our results to the timing and spatial extent of irrigation. We found that irrigation alters climate significantly in some regions, but has a negligible effect on global-average near-surface temperatures. Irrigation cooled the northern mid-latitudes; the central and southeast United States, portions of southeast China and portions of southern and southeast Asia cooled by ~0.5 K averaged over the year. Much of northern Canada, on the other hand, warmed by ~1 K. The cooling effect of irrigation seemed to be dominated by indirect effects like an increase in cloud cover, rather than by direct evaporative cooling. The regional effects of irrigation were as large as those seen in previous studies of land cover change, showing that changes in land management can be as important as changes in land cover in terms of their climatic effects. Our results were sensitive to the area of irrigation, but were insensitive to the details of irrigation timing and delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adegoke JO, Pielke RA, Eastman J, Mahmood R, Hubbard KG (2003) Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. high plains. Mon Weather Rev 131:556–564. doi:10.1175/1520-0493(2003)131≤0556:IOIOMS≥2.0.CO;2

    Article  Google Scholar 

  • Alcamo J, Doll P, Henrichs T, Kaspar F, Lehner B, Rosch T, Siebert S (2003) Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrolog Sci J 48:339–348. doi:10.1623/hysj.48.3.339.45278

    Article  Google Scholar 

  • Betts RA, Falloon PD, Goldewijk KK, Ramankutty N (2007) Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agric For Meteorol 142:216–233. doi:10.1016/j.agrformet.2006.08.021

    Article  Google Scholar 

  • Bonfils C, Lobell D (2007) Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc Natl Acad Sci USA 104:13582–13587. doi:10.1073/pnas.0700144104

    Article  Google Scholar 

  • Boucher O, Myhre G, Myhre A (2004) Direct human influence of irrigation on atmospheric water vapour and climate. Clim Dyn 22:597–603. doi:10.1007/s00382-004-0402-4

    Article  Google Scholar 

  • Bounoua L, DeFries R, Collatz GJ, Sellers P, Khan H (2002) Effects of land cover conversion on surface climate. Clim Change 52:29–64. doi:10.1023/A:1013051420309

    Article  Google Scholar 

  • Brovkin V, Ganopolski A, Claussen M, Kubatzki C, Petoukhov V (1999) Modelling climate response to historical land cover change. Global Ecol Biogeogr 8:509–517. doi:10.1046/j.1365-2699.1999.00169.x

    Article  Google Scholar 

  • Chase TN, Pielke RA, Kittel TGF, Baron JS, Stohlgren TJ (1999) Potential impacts on Colorado Rocky Mountain weather due to land use changes on the adjacent Great Plains. J Geophys Res Atmos 104:16673–16690

    Article  Google Scholar 

  • Chen F, Avissar R (1994) Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J Appl Meteorol 33:1382–1401. doi:10.1175/1520-0450(1994)033≤1382:IOLSMV≥2.0.CO;2

    Article  Google Scholar 

  • China State Statistical Bureau (2004) Statistical yearbook of China 2003. Economic Information & Agency, Hong Kong

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B, Bitz C, Lin S-J, Zhang M, Dai Y (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0). Tech Rep NCAR/TN-464 + STR, National Center for Atmospheric Research, Boulder, CO

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Briegleb BP, Bitz CM, Lin SJ, Zhang MH (2006) The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J Clim 19:2144–2161. doi:10.1175/JCLI3760.1

    Article  Google Scholar 

  • Dai A, Trenberth KE, Karl TR (1999) Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J Clim 12:2451–2473. doi:10.1175/1520-0442(1999)012≤2451:EOCSMP≥2.0.CO;2

    Article  Google Scholar 

  • Dickinson RE, Oleson KW, Bonan G, Hoffman F, Thornton P, Vertenstein M, Yang ZL, Zeng XB (2006) The Community Land Model and its climate statistics as a component of the Community Climate System Model. J Clim 19:2302–2324. doi:10.1175/JCLI3742.1

    Article  Google Scholar 

  • Doll P, Siebert S (2002) Global modeling of irrigation water requirements. Water Resour Res 38:1037. doi:10.1029/2001WR000355

    Article  Google Scholar 

  • Duffy PB, Bonfils C, Lobell D (2006) Interpreting recent temperature trends in California. EOS 88:409–410. doi:10.1029/2007EO410001

    Article  Google Scholar 

  • Foley JA, Costa MH, Delire C, Ramankutty N, Snyder P (2003) Green surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ 1:38–44

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    Article  Google Scholar 

  • Food and Agriculture Organization (FAO) (2004) AQUASTAT 2003. Available via http://www.fao.org/nr/water/aquastat/main/index.stm

  • Gleick PH (1998) The world’s water 1998–1999: The biennial report on freshwater resources. Island Press, Washington, D.C

    Google Scholar 

  • Govindasamy B, Duffy PB, Caldeira K (2001) Land use changes and northern hemisphere cooling. Geophys Res Lett 28:291–294. doi:10.1029/2000GL006121

    Article  Google Scholar 

  • Guerra LC, Bhuiyan SI, Tuong TP, Barker R (1998) Producing more rice with less water. SWIM paper 5. International Water Management Institute, Colombo, Sri Lanka

    Google Scholar 

  • Haddeland I, Lettenmaier DP, Skaugen T (2006) Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J Hydrol 324:210–223. doi:10.1016/j.jhydrol.2005.09.028

    Article  Google Scholar 

  • Hansen MC, DeFries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg RA (2003) Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interact 7:1–15. doi:10.1175/1087-3562(2003)007≤0001:GPTCAA≥2.0.CO;2

    Article  Google Scholar 

  • Helkowski JH (2004) Global patterns of soil moisture and runoff: An assessment of water availability, M.S. thesis. University of Wisconsin - Madison, Madison, WI

  • Hurrell JW, Hack JJ, Phillips AS, Caron J, Yin J (2006) The dynamical simulation of the Community Atmosphere Model version 3 (CAM3). J Clim 19:2162–2183. doi:10.1175/JCLI3762.1

    Article  Google Scholar 

  • Joshi AK, Mishra B, Chatrath R, Ferrara GO, Singh RP (2007) Wheat improvement in India: Present status, emerging challenges and future prospects. Euphytica 157:431–446. doi:10.1007/s10681-007-9385-7

    Article  Google Scholar 

  • Kucharik CJ, Twine TE (2007) Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. Agric For Meteorol 146:134–158. doi:10.1016/j.agrformet.2007.05.011

    Article  Google Scholar 

  • Kueppers LM, Snyder MA, Sloan LC (2007) Irrigation cooling effect: Regional climate forcing by land-use change. Geophys Res Lett 34. Doi:10.1029/2006GL028679

  • Kuo S (2001) Part III country papers: Republic of China. In: Asian Productivity Organization, Water use efficiency in irrigation in Asia. Asian Productivity Organization, Taipei, Taiwan

  • Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J Geophys Res Biogeosci 112:G01023

    Article  Google Scholar 

  • Leff B, Ramankutty N, Foley JA (2004) Geographic distribution of major crops across the world. Global Biogeochem Cycles 18:GB1009. doi:10.1029/2003GB002108

    Article  Google Scholar 

  • Lobell DB, Bala G, Duffy PB (2006) Biogeophysical impacts of cropland management changes on climate. Geophys Res Lett 33:L06708. doi:10.1029/2005GL025492

    Article  Google Scholar 

  • Mahmood R, Foster SA, Keeling T, Hubbard KG, Carlson C, Leeper R (2006) Impacts of irrigation on 20th century temperature in the northern Great Plains. Global Planet Change 54:1–18. doi:10.1016/j.gloplacha.2005.10.004

    Article  Google Scholar 

  • Matthews HD, Weaver AJ, Meissner KJ, Gillett NP, Eby M (2004) Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Clim Dyn 22:461–479. doi:10.1007/s00382-004-0392-2

    Article  Google Scholar 

  • Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231. doi:10.1016/S0034-4257(02)00074-3

    Article  Google Scholar 

  • Oleson KW, Dai Y, Bonan G, Bosilovich M, Dickinson R, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu G-Y, Thornton P, Vertenstein M, Yang Z-L, Zeng X (2004) Technical description of the community land model (CLM). Tech Rep NCAR/TN-461 + STR, National Center for Atmospheric Research, Boulder, CO

  • Oleson KW, Niu GY, Yang ZL, Lawrence DM, Thornton PE, Lawrence PJ, Stockli R, Dickinson RE, Bonan GB, Levis S, Dai A, Qian T (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res Biogeosci 113:G01021

    Article  Google Scholar 

  • Postel S (1999) Pillar of sand: Can the irrigation miracle last?. W·W. Norton & Co, New York

    Google Scholar 

  • Qian TT, Dai AG, Trenberth KE, Oleson KW (2006) Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. J Hydrometeorol 7:953–975. doi:10.1175/JHM540.1

    Article  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem Cycles 13:997–1027. doi:10.1029/1999GB900046

    Article  Google Scholar 

  • Schlesinger WH (1999) Carbon and agriculture - carbon sequestration in soils. Science 284:2095–2095. doi:10.1126/science.284.5423.2095

    Article  Google Scholar 

  • Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25:11–32

    Article  Google Scholar 

  • Siebert S, Döll P, Hoogeveen J (2001) Global map of irrigated areas version 2.0. Center for Environmental Systems Research, University of Kassel, Germany/Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Siebert S, Döll P, Hoogeveen J, Faures JM, Frenken K, Feick S (2005) Development and validation of the global map of irrigation areas. Hydrol Earth Syst Sc 9:535–547

    Article  Google Scholar 

  • United States Geological Survey (USGS) (2004) 1995 water-use data. Available via http://water.usgs.gov/watuse/spread95.html

  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: Vulnerability from climate change and population growth. Science 289:284–288. doi:10.1126/science.289.5477.284

    Article  Google Scholar 

  • Zhao M, Pitman AJ, Chase T (2001) The impact of land cover change on the atmospheric circulation. Clim Dyn 17:467–477. doi:10.1007/PL00013740

    Article  Google Scholar 

Download references

Acknowledgments

We thank NCAR’s Advanced Study Program for sponsoring the “Art of Climate Modeling” summer colloquium, where we began this work. Mark Decker was also involved in that initial stage of the project. Jon Foley, Chris Kucharik and Mutlu Ozdogan all provided many helpful suggestions throughout every stage of this project. WJS was supported by a National Science Foundation Graduate Research Fellowship, BIC by the National Oceanic and Atmospheric Administration Global Change Postdoctoral Program, and NB by a Cooperative Institute for Research in Environmental Studies student fellowship and a grant from the National Oceanic and Atmospheric Administration’s Climate and Global Change Program. The simulations were performed on NCAR supercomputers. NCAR is funded by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Sacks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacks, W.J., Cook, B.I., Buenning, N. et al. Effects of global irrigation on the near-surface climate. Clim Dyn 33, 159–175 (2009). https://doi.org/10.1007/s00382-008-0445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0445-z

Keywords

Navigation