Skip to main content

Advertisement

Log in

A high resolution hindcast of the meteorological sea level component for Southern Europe: the GOS dataset

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Two sets of 62-year (1948–2009) and 21-year (1989–2009) high-resolution hindcasts of the meteorological sea level component have been developed for Southern Europe using the Regional Ocean Model System (ROMS) of Rutgers University. These new databases, named GOS 1.1 and GOS 2.1, are a valuable tool for a wide variety of studies, such as those related to a better understanding of sea level variability, flooding risk and coastal engineering studies. The model domain encloses Southern Europe, including the Mediterranean Sea and the Atlantic coast, with a horizontal resolution of 1/8° (~14 km). In order to study the effect of the atmospheric forcing resolution, ROMS is driven with two different regional atmospheric forcings: SeaWind I (30 km of horizontal resolution) and SeaWind II (15 km of horizontal resolution). Both are the result of a dynamical downscaling from global atmospheric reanalysis: NCEP global reanalysis and ERA-Interim global reanalysis, respectively. As a result, two surge data sets are obtained: GOS 1.1 (forced with SeaWind I) and GOS 2.1 (forced with SeaWind II). Surge elevations calculated by ROMS are compared with in situ measurements from tide gauges in coastal areas and with open ocean satellite observations. The validation procedure, testing outcomes from GOS 1.1 and GOS 2.1 against observations, shows the capability of the model to simulate accurately the sea level variation induced by the meteorological forcing. A description of the surge in terms of seasonality and long term trends is also made. The climate variability analysis reveals clear seasonal patterns in the Mediterranean Sea basins. A long-term negative trend for the period 1948–2009 is found, whilst positive trends are computed for the last 20 years (GOS 2.1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Backhaus JO (1985) A three-dimensional model for the simulation of shelf sea dynamics. Deutsche Hydrographische Zeitschrift 38:165–187. doi:10.1007/BF02328975

    Article  Google Scholar 

  • Bernier NB, Thompson KR (2006) Predicting the frequency of storm surges and extreme sea levels in the northwest Atlantic. J Geophys Res 111:C10009. doi:10.1029/2005JC003168

    Article  Google Scholar 

  • Brown JM, Souza AJ, Wolf J (2010) An 11-year validation of wave-surge modelling in the Irish Sea, using a nested POLCOMS–WAM modelling system. Ocean Model 33:118–128. doi:10.1016/j.ocemod.2009.12.006

    Article  Google Scholar 

  • Butler A, Heffernan JE, Tawn JA et al (2007) Extreme value analysis of decadal variations in storm surge elevations. J Mar Syst 67:189–200. doi:10.1016/j.jmarsys.2006.10.006

    Article  Google Scholar 

  • Calafat FM, Gomis D (2009) Reconstruction of Mediterranean sea level fields for the period 1945–2000. Global Planet Change 66:225–234. doi:10.1016/j.gloplacha.2008.12.015

    Article  Google Scholar 

  • Carrère L (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—comparisons with observations. Geophys Res Lett 30:1275. doi:10.1029/2002GL016473

    Article  Google Scholar 

  • Carretero JC, Alvarez Fanjul E, Gómez Lahoz M et al (2000) Ocean forecasting in narrow shelf seas: application to the Spanish coasts. Coast Eng 41:269–293. doi:10.1016/S0378-3839(00)00035-1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Ferrarin C, Roland A, Bajo M, Umgiesser G, Cucco A, Davolio S, Drofa O (2013) Tide-surge-wave modelling and forecasting in the Mediterranean Sea with focus on the Italian coast. Ocean Model 61(2):38–48. doi:10.1016/j.ocemod.2012.10.003

    Article  Google Scholar 

  • Flather R, Williams J (2000) Climate change effects on storm surges: methodologies and results. ECLAT-2 Workshop 66–78

  • Flather RA, Smith JA, Richards JD et al (1998) Direct estimates of extreme storm surge elevations from a 40-year numerical model simulation and from observations. Glob Atmos Ocean Syst 6:165–176

    Google Scholar 

  • García-Lafuente J, Del Río J, Alvarez Fanjul E, et al (2004) Some aspects of the seasonal sea level variations around Spain. J Geophys Res 109. doi:10.1029/2003JC002070

  • Gomis D, Ruiz S, Sotillo MG et al (2008) Low frequency Mediterranean sea level variability: the contribution of atmospheric pressure and wind. Global Planet Change 63:215–229. doi:10.1016/j.gloplacha.2008.06.005

    Article  Google Scholar 

  • Haidvogel DB, Arango HG, Hedstrom K et al (2000) Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn Atmos Oceans 32:239–281. doi:10.1016/S0377-0265(00)00049-X

    Article  Google Scholar 

  • Haidvogel DB, Arango H, Budgell WP et al (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional Ocean modeling system. J Comput Phys 227:3595–3624. doi:10.1016/j.jcp.2007.06.016

    Article  Google Scholar 

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63:119–129. doi:10.1007/BF01025368

    Article  Google Scholar 

  • Jones EJ, Davies AM (2006) Application of a finite element model (TELEMAC) to computing the wind induced response of the Irish Sea. Cont Shelf Res 26:1519–1541. doi:10.1016/j.csr.2006.03.013

    Article  Google Scholar 

  • Jordà G, Gomis D, Álvarez-Fanjul E, Somot S (2012) Atmospheric contribution to Mediterranean and nearby Atlantic sea level variability under different climate change scenarios. Global Planet Change 80–81:198–214. doi:10.1016/j.gloplacha.2011.10.013

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Lionello P (2012) The climate of the Mediterranean region from the past to the future, 1 st Edition 592

  • Losada IJ, Reguero BG, Méndez FJ, Castanedo S, Abascal AJ, Mínguez R (2013) Long-term changes in sea-level components in Latin America and the Caribbean. Global Planet Change 104:34–50

    Article  Google Scholar 

  • Lowe JA, Gregory JM, Flather RA (2001) Changes in the occurrence of storm surges around the United Kingdom under a future climate scenario using a dynamic storm surge model driven by the Hadley Centre climate models. Clim Dyn 18:179–188. doi:10.1007/s003820100163

    Article  Google Scholar 

  • Marcos M, Tsimplis MN (2007) Variations of the seasonal sea level cycle in southern Europe. J Geophys Res 112:2007

    Google Scholar 

  • Marcos M, Tsimplis MN, Shaw AGP (2009) Sea level extremes in southern Europe. J Geophys Res 114:1–16. doi:10.1029/2008JC004912

    Google Scholar 

  • Menéndez M, García-Díez M, Fita L et al (2013) High-resolution sea wind hindcasts over the Mediterranean area. Clim Dyn. doi:10.1007/s00382-013-1912-8

    Google Scholar 

  • Pascual A, Marcos M, Gomis D (2008) Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J Geophys Res 113:C07011. doi:10.1029/2007JC004459

    Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929–937. doi:10.1016/S0098-3004(02)00013-4

    Article  Google Scholar 

  • Ratsimandresy AW, Sotillo MG, Carretero Albiach JC et al (2008) A 44-year high-resolution ocean and atmospheric hindcast for the Mediterranean Basin developed within the HIPOCAS Project. Coast Eng 55:827–842. doi:10.1016/j.coastaleng.2008.02.025

    Article  Google Scholar 

  • Ray R (1999) A global Ocean tide model from TOPEX/Poseidon altimetry: GOT99.2. NASA Techincal Memo 1999–209478

  • Sebastião P, Guedes Soares C, Alvarez E (2008) 44 years hindcast of sea level in the Atlantic coast of Europe. Coast Eng 55:843–848. doi:10.1016/j.coastaleng.2008.02.022

    Article  Google Scholar 

  • Šepić J, Vilibić I, Strelec Mahović N (2012) Northern Adriatic meteorological tsunamis: observations, link to the atmosphere, and predictability. J Geophys Res 117(C2):C02002. doi:10.1029/2011JC007608

    Google Scholar 

  • Shchepetkin AF, Mcwilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404. doi:10.1016/j.ocemod.2004.08.002

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J et al (2008) A description of the advanced research WRF version 3. In: NCAR Technology, NCAR/TN- 475+ STR

  • Smith WH, Sandwell DT (1997) Global Sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962. doi:10.1126/science.277.5334.1956

    Article  Google Scholar 

  • Tsimplis MN, Baker TF (2000) Sea level drop in the Mediterranean Sea: an indicator of deep water salinity and temperature changes? Geophys Res Lett 27:1731–1734

    Article  Google Scholar 

  • Tsimplis MN, Alvarez-Fanjul E, Gomis D et al (2005) Mediterranean Sea level trends: atmospheric pressure and wind contribution. Geophys Res Lett 32:L20602. doi:10.1029/2005GL023867

    Article  Google Scholar 

  • Volkov DL, Larnicol G, Dorandeu J (2007) Improving the quality of satellite altimetry data over continental shelves. J Geophys Res 112:C06020. doi:10.1029/2006JC003765

    Google Scholar 

  • Wakelin S, Proctor R (2002) The impact of meteorology on modelling storm surges in the Adriatic Sea. Global Planet Change 34:97–119

    Article  Google Scholar 

  • Wang S, McGrath R, Hanafin J et al (2008) The impact of climate change on storm surges over Irish waters. Ocean Model 25:83–94. doi:10.1016/j.ocemod.2008.06.009

    Article  Google Scholar 

  • Woth K, Weisse R, Storch H (2005) Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dyn 56:3–15. doi:10.1007/s10236-005-0024-3

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Puertos del Estado for the REDMAR network’s data provided for this study, as well as the University of Hawaii Sea Level Center, Système d’Observation du Niveau des Eaux Littorales and Istituto Superiore per la Protezione e la Ricerca Ambientale. The satellite data were produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes. This work was partly funded by the Projects iMar21 (CTM2010-15009) and SaltyCor (BIA2011-29031-C02-00) from the Spanish government, and from the FP7 European Projects CoCoNet (287844) and Theseus (ENV.2009-1, n244104). GOS 1.1 and GOS 2.1 data sets are available under request for scientific purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Cid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cid, A., Castanedo, S., Abascal, A.J. et al. A high resolution hindcast of the meteorological sea level component for Southern Europe: the GOS dataset. Clim Dyn 43, 2167–2184 (2014). https://doi.org/10.1007/s00382-013-2041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-2041-0

Keywords

Navigation