Skip to main content

Advertisement

Log in

A case study of a modelled episode of low Arctic sea ice

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Simulations of the Arctic sea ice cover over the last 32 years generated by the HadGEM1 coupled climate model are able to capture the observed long term decline in mean September ice extent. HadGEM1 is also capable of producing an episode of low September ice extent of similar magnitude to the anomalously low extent observed in 2007. Using a heat budget analysis, together with diagnostics partitioning the changes in ice and snow mass into thermodynamic and dynamic components, we analyse the factors driving the long term decline in the ice mass and extent as well as those causing the modelled low ice event. The long term decline in the mass of ice and snow in HadGEM1 is largely due to extra melting during the summer, partly at the top surface of the ice, and partly via extra heating from the ocean as it warms due to the ice retreat. The episode of low summer ice extent is largely driven by the synoptic conditions over the summer moving the ice across and out of the Arctic basin, and also due to pre-conditioning of the snow and ice which is thinner than usual in the Eastern Arctic at the start of the melt season. This case study demonstrates that although HadGEM1 does not capture the persistent dipole pressure anomaly observed during the summer of 2007, it represents broadly similar mechanisms of generating a low ice extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Meier et al. (2007) noted a significant inconsistency in the original version of HadISST due to a change in the satellite data product in 1996/1997. The version of HadISST (vn1.2) presented here has had this inconsistency corrected (Titchner and Rayner, pers. com. 2009).

References

  • Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Banks HT, Stark S, Keen AB (2007) The adjustment of the coupled climate model HadGEM1 toward equilibrium and the impact on global climate. J Clim 20:5815–5826. doi:10.1175/2007JCLI1688.1

    Article  Google Scholar 

  • Bitz CM, Roe GH (2004) A Mechanism for the high rate of sea ice thinning in the Arctic Ocean. J Clim 17:3623–3632. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Curry JA, Schramm JL, Perovich DK, Pinto JO (2001) Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J Geophys Res 106:D14. doi:10.1029/2000JD900311

    Google Scholar 

  • Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J Clim 17:877–889

    Article  Google Scholar 

  • Deser C, Thomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20:4751–4767

    Article  Google Scholar 

  • Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(C6):12609–12646. doi:10.1029/97JC00480

    Google Scholar 

  • Francis JA, Chan W, Leathers DJ, Miller JR, Veron DE (2009) Winter Northern Hemisphere weather patterns remember summer Arctic sea ice extent. Geophys Res Lett 36:L07503. doi:10.1029/2009GL037274

    Article  Google Scholar 

  • Graversen RG, Mauritsen T, Drijfhout S, Tjernström M, Mårtensson S (2011) Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Clim Dyn 36:2103–2112. doi:10.1007/s00382-010-0809

    Article  Google Scholar 

  • Guemas V, Salas-Melia D (2008) Simulation of the Atlantic meridional overturning circulation in an atmosphere-ocean global coupled model. Part II: weakening in a climate change experiment: a feedback mechanism. Clim Dyn 30:831–844. doi:10.1007/s00382-007-0328-8

    Article  Google Scholar 

  • Hibler WD (1979) A dynamical thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • Holland MM, Bitz CM, Eby M, Weaver AJ (2001) The role of ice–ocean interactions in the variability of the North Atlantic thermohaline circulation. J Clim 14(5):656–675. doi:10.1175/1520-0442(2001)014<0656:TROIOI>2.0.CO;2

    Google Scholar 

  • Holland MM, Serreze MC, Stroeve J (2010) The sea ice mass budget of the Arctic and it’s future change as simulated by coupled climate models. Clim Dyn 34:185–200. doi:10.1007/s00382-008-0493-4

    Article  Google Scholar 

  • Holland MM, Bailey DA, Vavrus S (2011) Inherent sea ice predictability in the rapidly changing Arctic environment of the community climate system model, version 3. Clim Dyn 36(7–8):1239–1253. doi:10.1007/s00382-010-0792-4

    Google Scholar 

  • Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867. doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2004) CICE: the Los Alamos sea ice model, documentation and software, version 3.1, LA-CC-98-16, Los Alamos Natl. Lab., Los Alamos, N. M

  • Johns TC et al (2006) The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations. J Clim 19:1327–1353. doi:10.1175/JCLI3712.1

    Article  Google Scholar 

  • Jones GS, Christidis N, Stott PA (2011) Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes. Atmos Chem Phys 11:799–816. doi:10.5194/acp-11-799-2011

    Article  Google Scholar 

  • Kauker F, Kaminski T, Karcher M, Giering R, Gerdes R, Voßbeck M (2009) Adjoint analysis of the 2007 all time Arctic sea-ice minimum. Geophys Res Lett 36:L03707. doi:10.1029/2008GL036323

    Article  Google Scholar 

  • Kwok R (2008) Summer sea ice motion from the 18 GHz channel of AMSR-E and the exchange of sea ice between the Pacific and Atlantic sectors. Geophys Res Lett 35:L03504. doi:10.1029/2007GL032692

    Article  Google Scholar 

  • L’Heureux ML, Kumar A, Bell GD, Halpert MS, Higgins RW (2008) Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys Res Lett 35:L20701. doi:10.1029/2008GL035205

  • Lindsay RW, Zhang J (2005) The thinning of Arctic sea ice, 1988–2003: have we passed a tipping point? J Clim 18:4879–4894. doi:http://dx.doi.org/10.1175/JCLI3587.1

    Google Scholar 

  • Lindsay RW, Zhang J, Schweiger A, Steele M, Stern H (2009). Arctic sea ice retreat in 2007 follows thinning trend. J Clim 22(1):165–176. doi:10.1175/2008JCLI2521.1

    Google Scholar 

  • Lipscomb WH (2001) Remapping the thickness distribution in sea ice models. J Geophys Res 106:13989–14000. doi:10.1029/2000JC000518

    Google Scholar 

  • Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea-ice anomalies on the winter circulation in CCM3. Part I: main features and storm-track characteristics of the response. J Clim 17:857–876

    Article  Google Scholar 

  • Maslanik J, Drobot S, Fowler C, Emery W, Barry R (2007a) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34(3):Article Number: L03711. doi:10.1029/2006GL028269. Published: FEB 13 2007

  • Maslanik J, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007b) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett 34(24):Article Number: L24501. doi:10.1029/2007GL032043

  • McLaren AJ, Banks HT, Durman CF, Gregory JM, Johns TC, Keen AB, Ridley JK, Roberts MJ, Lipscomb WH, Connolley WM, Laxon SW (2006) Evaluation of the sea ice simulation in a new coupled atmosphere-ocean climate model (HadGEM1). J Geophys Res 111(C12):Article Number: C12014. doi:10.1029/2005JC003033

  • McPhee MG (1992) Turbulent heat flux in the upper ocean under sea ice. J Geophys Res 97(C4):5365–5379. doi:10.1029/92JC00239

    Google Scholar 

  • Meier W, Stroeve J, Fetterer F (2007) Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record. Ann Glaciol 46:428–434. doi:10.3189/172756407782871170

    Article  Google Scholar 

  • Nakićenović N, Swart R (eds) (2000) Special report on emissions scenarios. A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Notz D (2009) The future of ice sheets and sea ice: between reversible retreat and unstoppable loss. Proc Natl Acad Sci 106(49):20590–20595. doi:10.1073/pnas.0902356106

    Article  Google Scholar 

  • Ogi M, Rigor IG, McPhee MG, Wallace JM (2008) Summer retreat of Arctic sea ice: role of summer winds. Geophys Res Lett 35:L24701. doi:10.1029/2008GL035672

    Article  Google Scholar 

  • Overland JE (2011) Potential Arctic change through climate amplification processes. Oceanography 24:176–185

    Article  Google Scholar 

  • Overland J, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62:1–9. doi:10.1111/j.1600-0870.2009.00421.x

    Article  Google Scholar 

  • Overland JE, Wang M, Salo S (2008) The recent Arctic warm period. Tellus A 60:589–597. doi:10.1111/j.1600-0870.2008.00327.x

    Article  Google Scholar 

  • Perovich DK (2011) The changing arctic sea ice cover. Oceanography 24:162–173

    Article  Google Scholar 

  • Perovich DK, Grenfell TC, Richter-Menge JA, Light B, Tucker III WB, Eicken H (2003) Thin and thinner: sea ice mass balance measurements during SHEBA. J Geophys Res 108(C3):8050. doi:10.1029/2001JC001079

    Google Scholar 

  • Perovich DK, Light B, Eicken H, Jones KF, Runciman K, Nghiem SV (2007) Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys Res Lett 34:L19505. doi:10.1029/2007GL031480

    Article  Google Scholar 

  • Perovich DK, Richter-Menge JA, Jones KF, Light B (2008) Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007. Geophys Res Lett 35:L11501. doi:10.1029/2008GL034007

    Article  Google Scholar 

  • Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115. doi:10.1029/2009JD013568

  • Polyakov IV et al (2005) One more step toward a warmer Arctic. Geophys Res Lett 32:L17605. doi:10.1029/2005GL023740

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14). doi:10.1029/2002JD002670

  • Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R (2011) Uncertainty in modeled Arctic sea ice volume. J. Geophys Res 116:C00D06. doi:10.1029/2011JC007084

  • Sedlacek J, Knutti R, Martius O, Beyerle U (2011) Impact of a reduced Arctic sea-ice cover on ocean and atmospheric properties. J Clim. doi:10.1175/2011JCLI3904.1

    Google Scholar 

  • Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389. doi:10.1175/1520-0485

    Google Scholar 

  • Semtner AJ (1984) On modelling the seasonal thermodynamic cycle of sea ice in studies of climatic change. Climatic Change 6:27–37

    Article  Google Scholar 

  • Serreze MC, Barrett AP, Slater AG, Steele M, Zhang J, Trenberth KE (2007) The large-scale energy budget of the Arctic. J Geophys Res 112:D11122. doi:10.1029/2006JD008230

    Article  Google Scholar 

  • Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E, McLaughlin F, Zimmermann S, Proshutinsky A (2006) Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett 33:L08605. doi:10.1029/2005GL025624

    Article  Google Scholar 

  • Steele M, Zhang J, Ermold W (2010) Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt. J Geophys Res 115:C11004. doi:10.1029/2009JC005849

    Article  Google Scholar 

  • Stott PA, Jones GS, Lowe JA, Thorne P, Durman C, Johns TC, Thelen J-C (2006) Transient climate simulations with the HadGEM1 climate model: causes of past warming and future climate change. J Clim 19:2763–2782. doi:10.1175/JCLI3731.1

    Article  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi:10.1029/2007GL029703

    Article  Google Scholar 

  • Stroeve J, Serreze M, Drobot S, Gearheard S, Holland M, Maslink J, Meier W, Scambos T (2008) Arctic sea ice extent plummets in 2007. EOS Trans 89(2):13–14

    Google Scholar 

  • Stroeve JC, Serreze MC, Kay JE, Holland MM, Meier WN, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change 110:1005–1027. doi:10.1007/s10584-011-0101-1

    Article  Google Scholar 

  • Strong C, Magnusdottir G, Stern H (2009) Observed feedback between winter sea ice and the North Atlantic Oscillation. J Clim 22:6021–6032. doi:10.1175/2009JCLI3100.1

    Article  Google Scholar 

  • Thorndike AS, Rothrock DA, Maykut GA, Colony R (1975) The thickness distribution of sea ice. J Geophys Res 80(33):4501–4513

    Article  Google Scholar 

  • Tucker WB III, Gow AJ, Weeks WF (1987) Physical properties of summer sea ice in the fram strait. J Geophys Res 92:C7. doi:10.1029/JC092iC07p06787

    Article  Google Scholar 

  • Vancoppenolle M, Fichefet T, Bitz CM (2005) On the sensitivity of undeformed Arctic sea ice to its vertical salinity profile. Geophys Res Lett 32:L16502. doi:10.1029/2005GL023427

    Article  Google Scholar 

  • Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:L07502. doi:10.1029/2009GL037820

    Article  Google Scholar 

  • Wang J, Zhang J, Watanabe E, Ikeda M, Mizobata K, Walsh JE, Bai X, Wu B (2009) Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys Res Lett 36:L05706. doi:10.1029/2008GL036706

    Article  Google Scholar 

  • West AE, Keen AB, Hewitt HT (2013) Mechanisms causing reduced Arctic sea ice loss in a coupled climate model, submitted to the Cryosphere

  • Wu Q, Zhang X (2010) Observed forcing feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J Geophys Res 115:D14119. doi:10.1029/2009JD013574

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the UK Department of Energy and Climate Change (DECC) and the Department for Environment, Food and Rural Affairs (Defra), through the DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). We thank two anonymous reviewers for their useful comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann B. Keen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keen, A.B., Hewitt, H.T. & Ridley, J.K. A case study of a modelled episode of low Arctic sea ice. Clim Dyn 41, 1229–1244 (2013). https://doi.org/10.1007/s00382-013-1679-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1679-y

Keywords

Navigation