Skip to main content

Advertisement

Log in

The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Arctic sea ice mass budgets for the twentieth century and projected changes through the twenty-first century are assessed from 14 coupled global climate models. Large inter-model scatter in contemporary mass budgets is strongly related to variations in absorbed solar radiation, due in large part to differences in the surface albedo simulation. Over the twenty-first century, all models simulate a decrease in ice volume resulting from increased annual net melt (melt minus growth), partially compensated by reduced transport to lower latitudes. Despite this general agreement, the models vary considerably regarding the magnitude of ice volume loss and the relative roles of changing melt and growth in driving it. Projected changes in sea ice mass budgets depend in part on the initial (mid twentieth century) ice conditions; models with thicker initial ice generally exhibit larger volume losses. Pointing to the importance of evolving surface albedo and cloud properties, inter-model scatter in changing net ice melt is significantly related to changes in downwelling longwave and absorbed shortwave radiation. These factors, along with the simulated mean and spatial distribution of ice thickness, contribute to a large inter-model scatter in the projected onset of seasonally ice-free conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • ACIA (2005) Impacts of a warming Arctic. Arctic Climate Impact Assessment (ACIA). Cambridge University Press, Cambridge, 140 pp

  • Arzel O, Fichefet T, Goosse H (2006) Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Model 12:401–415. doi:10.1016/j.ocemod.2005.08.002

    Article  Google Scholar 

  • Arzel O, Fichefet T, Goosse H, Dufresne J-L (2008) Causes and impacts of changes in the Arctic freshwater budget during the 20th and 21st centuries in an AOGCM. Clim Dyn 30:37–58. doi:10.1007/s00382-007-0258-5

    Article  Google Scholar 

  • Belchansky GI, Douglas DC, Platonov NG (2004) Duration of the Arctic sea ice melt season: regional and interannual variability, 1979–2001. J Clim 17:67–80. doi:10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2

    Article  Google Scholar 

  • Bitz CM, Roe GH (2004) A mechanism for the high rate of sea-ice thinning in the Arctic Ocean. J Clim 17:3622–3631. doi:10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2

    Article  Google Scholar 

  • Bitz CM, Gent PR, Woodgate RA, Holland MM, Lindsay R (2006) The influence of sea ice on ocean heat uptake in response to increasing CO2. J Clim 19:2437–2450. doi:10.1175/JCLI3756.1

    Article  Google Scholar 

  • Bourke RH, Garrett RP (1987) Sea ice thickness distribution in the Arctic Ocean. Cold Reg Sci Technol 13:259–280. doi:10.1016/0165-232X(87)90007-3

    Article  Google Scholar 

  • Chapman WL, Walsh JE (2007) Simulations of Arctic temperature and pressure by global coupled models. J Clim 20:609–632. doi:10.175/JCLI4026.1

    Article  Google Scholar 

  • DeWeaver ET, Hunke EC, Holland MM (2008) Comment on “On the reliability of simulated Arctic sea ice in global climate models’’ by I. Eisenman, N. Untersteiner, and J. S. Wettlaufer. Geophys Res Lett 35:L04501. doi:10.1029/2007GL031325

    Article  Google Scholar 

  • Gerdes R, Koberle C (2007) Comparison of Arctic sea ice thickness variability in IPCC climate of the 20th century experiments and in ocean–sea ice hindcasts. J Geophys Res 112:C04S13. doi:10.1029/2006JC003616

    Article  Google Scholar 

  • Gorodetskaya IV, Tremblay LB, Liepert B, Cane MA, Cullather RI (2008) The influence of cloud and surface properties on the Arctic Ocean shortwave radiation budget in coupled models. J Clim 21. doi:10.1175/2007JCLI1614.1

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232. doi:00382-003-0332-6

    Article  Google Scholar 

  • Holland MM, Bitz CM, Tremblay B (2006a) Future abrupt reductions in the Summer Arctic sea ice. Geophys Res Lett 33:L23503. doi:10.1029/2006GL028024

    Article  Google Scholar 

  • Holland MM, Bitz CM, Hunke EC, Lipscomb WH, Schramm JL (2006b) Influence of the sea ice thickness distribution on Polar Climate in CCSM3. J Clim 19:2398–2414. doi:10.1175/JCLI3751.1

    Article  Google Scholar 

  • Houghton JT et al (eds) (2001) Climate change 2001: the scientific basis, Cambridge University Press, Cambridge

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon SD, Qin M, Manning ZC, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996 pp

  • Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an increase of CO2 in the atmosphere. J Geophys Res 85(C10):5529–5554. doi:10.1029/JC085iC10p05529

    Article  Google Scholar 

  • Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally HJ, Yi D, Emery WJ (2007) A younger, thinner ice cover: increased potential for rapid, extensive ice loss. Geophys Res Lett 34:L24501. doi:10.1029/2007GL032043

    Article  Google Scholar 

  • Maykut G (1982) Large-scale heat exchange and ice production in the Central Arctic. J Geophys Res 87:7971–7984. doi:10.1029/JC087iC10p07971

    Article  Google Scholar 

  • Maykut GA (1986) The surface heat and mass balance. In: Untersteiner N (ed) The geophysics of sea ice. Plenum Press, New York, pp 395–464

    Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer R, Taylor KE (2007) THE WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88. doi:10.1175/BAMS-88-9-1383

  • Nghiem SV, Chao Y, Neumann G, Li P, Perovich DK, Street T, Clemente-Colon P (2006) Depletion of perennial sea ice in the East Arctic Ocean. Geophys Res Lett 33:L17501. doi:10.1029/2006GL027198

    Article  Google Scholar 

  • Overland JE, Spillane MC, Soreide NN (2004) Integrated analysis of physical and biological pan-Arctic change. Clim Change 63:291–322. doi:10.1023/B:CLIM.0000018512.40506.d2

    Article  Google Scholar 

  • Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26:3469–3472. doi:10.1029/1999GL010863

    Article  Google Scholar 

  • Serreze MC et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207. doi:10.1023/A:1005504031923

    Google Scholar 

  • Serreze MC et al (2003) A record minimum arctic sea ice extent, area in 2002. Geophys Res Lett 30:1110. doi:10.1029/2002GL016406

    Article  Google Scholar 

  • Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Change. doi:10.10007/s10584-005-9017

  • Serreze MC, Holland MM, Stroeve J (2007a) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536. doi:10.1126/science.1139426

    Article  Google Scholar 

  • Serreze MC, Barrett AP, Slater AG, Steele M, Zhang J, Trenberth KE (2007b) The large-scale energy budget of the Arctic. J Geophys Res 112. doi:10.1029/2006JD008230

  • Sorteberg A, Kattsov V, Walsh JE, Pavlova T (2007) The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs. Clim Dyn 29. doi:10.1007/s00382-006-0222-9

  • Stroeve JC, Serreze MC, Fetterer F, Arbetter T, Meier M, Maslanik J, Knowles K (2005) Tracking the Arctic’s shrinking ice cover: another extreme September minimum in 2004. Geophys Res Lett 32:L04501. doi:10.1029/2004GL021810

    Article  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze MC (2007) Arctic Sea Ice Decline: Faster than Forecast. Geophys Res Lett 34. doi:10.1029/2007GL029703

  • Stroeve J, Serreze M, Drobot S, Gearhead S, Holland M, Maslanik J, Meier W, Scambos T (2008) Arctic sea ice plummets in 2007. EOS 89(2):13–14. doi:10.1029/2008EO020001

    Article  Google Scholar 

  • Vavrus S, Waliser D, Schweiger A, Francis J (2008) Simulations of 20th and 21st century Arctic clouds in the global climate models assessed in the IPCC AR4. Clim Dyn (submitted)

  • Winton M (2006) Does the Arctic sea ice have a tipping point? Geophys Res Lett 33. doi:10.1029/2006GL028017

  • Zhang X, Walsh JE (2006) Toward a seasonally ice-covered Arctic Ocean: scenarios from the IPCC AR4 model simulations. J Clim 19:1730–1747. doi:10.1175/JCLI3767.1

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by NASA grant NNG06GB26G and NSF grant ARC-0531040. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, US Department of Energy. NCAR is supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marika M. Holland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, M.M., Serreze, M.C. & Stroeve, J. The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Clim Dyn 34, 185–200 (2010). https://doi.org/10.1007/s00382-008-0493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0493-4

Keywords

Navigation