Skip to main content

Advertisement

Log in

Presence of glioma stroma mesenchymal stem cells in a murine orthotopic glioma model

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

High-grade gliomas are closely related to the mesenchymal phenotype which might be explained by unorthodox differentiation of glioma cancer stem cells (gCSCs). We reasoned that other non-neural stem cells, especially mesenchymal stem cells (MSCs), might play a role in expresssing mesenchymal phenotype of high-grade gliomas. Thus we hypothesized that cells resembling MSCs exist in glioma specimens.

Methods

We created a mouse (m) orthotopic glioma model using human gCSCs. Single-cell suspensions were isolated from glioma specimens and cultured according to the methods for mMSCs or gliomaspheres. These cells were analyzed by fluorescence-activated cell sorting (FACS) for surface markers associated with mMSCs or gCSCs. Glioma stroma (GS)-MSCs were exposed to mesenchymal differentiation conditions. To decide the location of GS-MSCs, sections of orthotopic glioma models were analyzed by immunofluorescent labeling.

Results

GS-MSCs were isolated which were morphologically similar to mMSCs. FACS analysis showed that the GS-MSCs had similar surface markers to mMSCs (stem cell antigen-1 [Sca-1]+, CD9+, CD45, CD11b, CD31, and nerve/glial antigen 2 [NG2]). GS-MSCs were capable of mesenchymal differentiation. Immunofluorescent labeling indicated that GS-MSCs are located around blood vessels, are distinct from endothelial cells, and have features that partially overlap with vascular pericytes.

Conclusions

Our results indicate that cells similar to mMSCs exist in glioma specimens. The GS-MSCs might be located around vessels, which suggests that GS-MSCs may provide the mesenchymal elements of the vascular niche. GS-MSCs may represent non-neural stem cells that act as an important source of mesenchymal elements, particularly during the growth of gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  2. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  3. Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99:1583–1593

    Article  PubMed  CAS  Google Scholar 

  4. Oliver L, Olivier C, Marhuenda FB, Campone M, Vallette FM (2009) Hypoxia and the malignant glioma microenvironment: regulation and implications for therapy. Curr Mol Pharmacol 2:263–284

    Article  PubMed  CAS  Google Scholar 

  5. Kanamori M, Kawaguchi T, Berger MS, Pieper RO (2006) Intracranial microenvironment reveals independent opposing functions of host alphaVbeta3 expression on glioma growth and angiogenesis. J Biol Chem 281:37256–37264

    Article  PubMed  CAS  Google Scholar 

  6. Stewart PA, Farrell CL, Del Maestro RF (1991) The effect of cellular microenvironment on vessels in the brain. Part 1: vessel structure in tumour, peritumour and brain from humans with malignant glioma. Int J Radiat Biol 60:125–130

    Article  PubMed  CAS  Google Scholar 

  7. Kievit FM, Florczyk SJ, Leung MC, Veiseh O, Park JO, Disis ML, Zhang M (2010) Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials 31:5903–5910

    Article  PubMed  CAS  Google Scholar 

  8. Galderisi U, Cipollaro M, Giordano A (2006) Stem cells and brain cancer. Cell Death Differ 13:5–11

    Article  PubMed  CAS  Google Scholar 

  9. Fomchenko EI, Holland EC (2005) Stem cells and brain cancer. Exp Cell Res 306:323–329

    Article  PubMed  CAS  Google Scholar 

  10. Xouri G, Christian S (2010) Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol 21:40–46

    Article  PubMed  CAS  Google Scholar 

  11. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  PubMed  CAS  Google Scholar 

  12. Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97:6242–6244

    Article  PubMed  CAS  Google Scholar 

  13. Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, Mischel PS, Nelson SF (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64:6503–6510

    Article  PubMed  CAS  Google Scholar 

  14. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  PubMed  CAS  Google Scholar 

  15. Tso CL, Shintaku P, Chen J, Liu Q, Liu J, Chen Z, Yoshimoto K, Mischel PS, Cloughesy TF, Liau LM, Nelson SF (2006) Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res 4:607–619

    Article  PubMed  CAS  Google Scholar 

  16. Rieske P, Golanska E, Zakrzewska M, Piaskowski S, Hulas-Bigoszewska K, Wolanczyk M, Szybka M, Witusik-Perkowska M, Jaskolski DJ, Zakrzewski K, Biernat W, Krynska B, Liberski PP (2009) Arrested neural and advanced mesenchymal differentiation of glioblastoma cells—comparative study with neural progenitors. BMC Cancer 9:54

    Article  PubMed  Google Scholar 

  17. Ricci-Vitiani L, Pallini R, Larocca LM, Lombardi DG, Signore M, Pierconti F, Petrucci G, Montano N, Maira G, De Maria R (2008) Mesenchymal differentiation of glioblastoma stem cells. Cell Death Differ 15:1491–1498

    Article  PubMed  CAS  Google Scholar 

  18. Boerman RH, Anderl K, Herath J, Borell T, Johnson N, Schaeffer-Klein J, Kirchhof A, Raap AK, Scheithauer BW, Jenkins RB (1996) The glial and mesenchymal elements of gliosarcomas share similar genetic alterations. J Neuropathol Exp Neurol 55:973–981

    Article  PubMed  CAS  Google Scholar 

  19. Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F (2007) Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 86:8–16

    Article  PubMed  CAS  Google Scholar 

  20. Roorda BD, ter Elst A, Kamps WA, de Bont ES (2009) Bone marrow-derived cells and tumor growth: contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Crit Rev Oncol Hematol 69:187–198

    Article  PubMed  Google Scholar 

  21. Stagg J (2008) Mesenchymal stem cells in cancer. Stem Cell Rev 4:119–124

    Article  PubMed  Google Scholar 

  22. Lal S, Lacroix M, Tofilon P, Fuller GN, Sawaya R, Lang FF (2000) An implantable guide–screw system for brain tumor studies in small animals. J Neurosurg 92:326–333

    Article  PubMed  CAS  Google Scholar 

  23. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318

    PubMed  CAS  Google Scholar 

  24. Tropel P, Noel D, Platet N, Legrand P, Benabid AL, Berger F (2004) Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res 295:395–406

    Article  PubMed  CAS  Google Scholar 

  25. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24:1054–1064

    Article  PubMed  CAS  Google Scholar 

  26. Kang SG, Shinojima N, Hossain A, Gumin J, Yong RL, Colman H, Marini F, Andreeff M, Lang FF (2010) Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery 67:711–720

    Article  PubMed  Google Scholar 

  27. Fidler IJ, Poste G (2008) The “seed and soil” hypothesis revisited. Lancet Oncol 9:808

    Article  PubMed  Google Scholar 

  28. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573

    Article  Google Scholar 

  29. Mendoza M, Khanna C (2009) Revisiting the seed and soil in cancer metastasis. Int J Biochem Cell Biol 41:1452–1462

    Article  PubMed  CAS  Google Scholar 

  30. Lin HJ, Zuo T, Chao JR, Peng Z, Asamoto LK, Yamashita SS, Huang TH (2009) Seed in soil, with an epigenetic view. Biochim Biophys Acta 1790:920–924

    PubMed  CAS  Google Scholar 

  31. Marx J (2008) Cancer biology. All in the stroma: cancer’s Cosa Nostra. Science 320:38–41

    Article  PubMed  CAS  Google Scholar 

  32. Liotta LA, Kohn EC (2001) The microenvironment of the tumour–host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  33. Lottaz C, Beier D, Meyer K, Kumar P, Hermann A, Schwarz J, Junker M, Oefner PJ, Bogdahn U, Wischhusen J, Spang R, Storch A, Beier CP (2010) Transcriptional profiles of CD133+ and CD133− glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res 70:2030–2040

    Article  PubMed  CAS  Google Scholar 

  34. Hall B, Andreeff M, Marini F (2007) The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 180:263–283

    Article  PubMed  CAS  Google Scholar 

  35. Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339

    Article  PubMed  CAS  Google Scholar 

  36. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  PubMed  CAS  Google Scholar 

  37. Dai W, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE, Kloner RA (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112:214–223

    Article  PubMed  Google Scholar 

  38. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2004) BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 9:189–197

    Article  PubMed  CAS  Google Scholar 

  39. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    Article  PubMed  Google Scholar 

  40. Bababeygy SR, Cheshier SH, Hou LC, Higgins DM, Weissman IL, Tse VC (2008) Hematopoietic stem cell-derived pericytic cells in brain tumor angio-architecture. Stem Cells Dev 17:11–18

    Article  PubMed  CAS  Google Scholar 

  41. da Silva ML, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299

    Article  Google Scholar 

  42. da Silva ML, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  Google Scholar 

  43. Nardi NB (2005) All the adult stem cells, where do they all come from? An external source for organ-specific stem cell pools. Med Hypotheses 64:811–817

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0071299 and 2010-0004506) and a grant from the National R&D Program for Cancer Control, Ministry for Health, Welfare and Family affairs, Republic of Korea (1020340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Gu Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SM., Kang, SG., Park, NR. et al. Presence of glioma stroma mesenchymal stem cells in a murine orthotopic glioma model. Childs Nerv Syst 27, 911–922 (2011). https://doi.org/10.1007/s00381-011-1396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-011-1396-y

Keywords

Navigation