Skip to main content
Log in

Automatic view selection through depth-based view stability analysis

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Although the real world is composed of three-dimensional objects, we communicate information using two-dimensional media. The initial 2D view we see of an object has great importance on how we perceive it. Deciding which of the all possible 2D representations of 3D objects communicates the maximum information to the user is still challenging, and it may be highly dependent on the addressed task. Psychophysical experiments have shown that three-quarter views (oblique views between frontal view and profile view) are often preferred as representative views for 3D objects; however, for most models, no knowledge of its proper orientation is provided. Our goal is the selection of informative views without any user intervention. In order to do so, we analyze some stability-based view descriptors and present a new one that computes view stability through the use of depth maps, without prior knowledge on the geometry or orientation of the object. We will show that it produces good views that, in most of the analyzed cases, are close to three-quarter views.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andujar, C., Boo, J., Brunet, P., Gonzalez, M.F., Navazo, I., Vazquez, P.P., Vinacua, A.: Omnidirectional relief impostors. Comput. Graph. Forum 26(3), 553–560 (2007)

    Article  Google Scholar 

  2. Bennett, C., Gacs, P., Li, M., Vitanyi, P., Zurek, W.: Information distance. IEEE Trans. Inf. Theory 44, 1407–1423 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blanz, V., Tarr, M., Bülthoff, H.: What object attributes determine canonical views? Perception 28, 575–599 (1999)

    Article  Google Scholar 

  4. Bordoloi, U., Shen, H.W.: View selection for volume rendering. In: IEEE Visualization, pp. 487–494 (2005)

  5. Cebrián, M., Alfonseca, M., Ortega, A.: The normalized compression distance is resistant to noise. IEEE Trans. Inf. Theory 53(5), 1895–1900 (2007)

    Article  Google Scholar 

  6. Cilibrasi, R., Vitanyi, P.: Clustering by compression. IEEE Trans. Inf. Theory 51(4), 1523–1545 (2005)

    Article  MathSciNet  Google Scholar 

  7. Cleju, I., Saupe, D.: Evaluation of supra-threshold perceptual metrics for 3d models. In: Proc. 3rd Symposium on Applied Perception in Graphics and Visualization, pp. 41–44. ACM, New York (2006)

    Chapter  Google Scholar 

  8. Cyr, C.M., Kimia, B.B.: A similarity-based aspect-graph approach to 3d object recognition. Int. J. Comput. Vis. 57(1), 5–22 (2004)

    Article  Google Scholar 

  9. Freeman, W.T.: Exploiting the generic view assumption to estimate scene parameters. In: Proc. 4th Intl. Conference on Computer Vision, pp. 347–356. IEEE, Berlin (1993)

    Google Scholar 

  10. Freeman, W.T.: Exploiting the generic viewpoint assumption. Int. J. Comput. Vis. 20(3), 243–261 (1996)

    Article  Google Scholar 

  11. Fu, H., Cohen-Or, D., Dror, G., Sheffer, A.: Upright orientation of man-made objects. ACM Trans. Graph. 27(3), 1–7 (2008)

    Article  Google Scholar 

  12. Ikeuchi, K., Kanade, T.: Automatic generation of object recognition programs. Proc. IEEE 76(8), 1016–1035 (1988)

    Article  Google Scholar 

  13. Ji, G., Shen, H.W.: Dynamic view selection for time-varying volumes. IEEE Trans. Vis. Comput. Graph. 12(5), 1109–1116 (2006)

    Article  Google Scholar 

  14. Koenderink, J.J., Doorn, A.J.V.: Photometric invariants related to solid shape. Opt. Acta 27(7), 981–996 (1980)

    Google Scholar 

  15. Li, M., Vitanyi, P.M.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Berlin (1993)

    MATH  Google Scholar 

  16. Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.: The similarity metric. IEEE Trans. Inf. Theory 50(12), 3250–3264 (2004)

    Article  MathSciNet  Google Scholar 

  17. Mühler, K., Neugebauer, M., Tietjen, C., Preim, B.: Viewpoint selection for intervention planning. In: EG/IEEE-VGTC Symposium on Visualization, pp. 267–274 (2007)

  18. Palmer, S., Rosch, E., Chase, P.: Canonical perspective and the perception of objects. In: Attention and Performance IX, pp. 135–151 (1981)

  19. Plantinga, H., Dyer, C.R.: Visibility, occlusion, and the aspect graph. Int. J. Comput. Vis. 5, 137–160 (1990)

    Article  Google Scholar 

  20. Plemenos, D., Benayada, M.: Intelligent display in scene modeling. New techniques to automatically compute good views. In: International Conference GRAPHICON’96

  21. Polonsky, O., Patanè, G., Biasotti, S., Gotsman, C., Spagnuolo, M.: What’s in an image? Vis. Comput. 21(8–10), 840–847 (2005)

    Article  Google Scholar 

  22. Roberts, D., Marshall, A.: Viewpoint selection for complete surface coverage of three-dimensional objects. In: Proc. of the British Machine Vision Conference (1998)

  23. Sbert, M., Plemenos, D., Feixas, M., Gonzalez, F.: Viewpoint quality: Measures and applications. In: Neumann, L., Sbert, M., Gooch, B., Purgathofer, W. (eds.) Computational Aesthetics in Graphics, Visualization and Imaging (2005)

  24. Takahashi, S., Fujishiro, I., Takeshima, Y., Nishita, T.: A feature-driven approach to locating optimal viewpoints for volume visualization. In: IEEE Visualization, pp. 495–502 (2005)

  25. Tarr, M., Kriegman, D.: What defines a view? Vis. Res. 41(15), 1981–2004 (2001)

    Article  Google Scholar 

  26. Todd, J.T.: The visual perception of 3d shape. TRENDS Cogn. Sci. 8(3), 115–121 (2004)

    Article  Google Scholar 

  27. Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Automatic view selection using viewpoint entropy and its application to image-based modeling. Comput. Graph. Forum 22(4), 689–700 (2003)

    Article  Google Scholar 

  28. Vázquez, P.P., Monclús, E., Navazo, I.: Representative views and paths for volume models. In: Smart Graphics, pp. 106–117 (2008)

  29. Viola, I., Feixas, M., Sbert, M., Gröller, M.E.: Importance-driven focus of attention. IEEE Trans. Vis. Comput. Graph. 12(5), 933–940 (2006)

    Article  Google Scholar 

  30. Weinshall, D., Werman, M.: A computational theory of canonical views. In: Proc. APRA IU Workshop (1996)

  31. Weinshall, D., Werman, M.: On view likelihood and stability. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 97–108 (1997)

    Article  Google Scholar 

  32. Yuille, A.L., Coughlan, J.M., Konishi, S.: The generic viewpoint constraint resolves the generalized bas relief ambiguity. In: Conference on Information Sciences and Systems. Princeton University Press, Princeton (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere-Pau Vázquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez, PP. Automatic view selection through depth-based view stability analysis. Vis Comput 25, 441–449 (2009). https://doi.org/10.1007/s00371-009-0326-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0326-4

Keywords

Navigation