Skip to main content
Log in

Optical characterization of bubbly flows with a near-critical-angle scattering technique

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The newly developed critical angle refractometry and sizing technique (CARS) allows simultaneous and instantaneous characterization of the local size distribution and the relative refractive index (i.e. composition) of a cloud of bubbles. The paper presents the recent improvement of this technique by comparison of different light scattering models and inversion procedures. Experimental results carried in various air/water and air/water-ethanol bubbly flows clearly demonstrate the efficiency and the potential of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

BSD:

Bubble size distribution

CAM:

Complex angular moment

CSP:

Critical scattering pattern

CARS:

Critical angle refractometry and sizing

GO:

Geometrical optics

LMT:

Lorenz-Mie theory

NNLSQ:

Non-negative least square method

POA:

Physical optics approximation

a :

Particle radius

D :

Particle diameter

m :

Relative refractive index (m b/m s)

m b :

Bubble refractive index

m s :

Surrounding medium refractive index

p :

Order of scattered rays

σ D :

Standard deviation of bubble diameters

θc :

Critical angle

λ:

Wavelength

References

  • Airy GB (1838) On the intensity of light in the neighborhood of a caustic. Trans Camb Philos Soc 6:397–403

    Google Scholar 

  • Albrecht H-E, Borys M, Damasche N, Tropea C (2003) Laser Doppler and phase Doppler measurement techniques. Springer, Berlin

    Google Scholar 

  • Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  • Bultynck H (1998) Développements de sondes laser Doppler miniatures pour la mesure de particules dans des écoulements réels complexes. PhD thesis, University of Rouen, France

  • Chang SC, Jin JM, Jin J, Zhang S (1996) Computations of special functions. Wiley, New York

    Google Scholar 

  • David J, Pereira F, Gharib M (2003) Applications of defocusing DPIV to bubbly flow, measurement. Part Part Syst Charact 20(3):193–198

    Article  Google Scholar 

  • Davis GE (1955) Scattering of light by an air bubble in water. J Opt Soc Am A 45:572–581

    Article  Google Scholar 

  • Dhotre MT, Smith BL, Niceno B (2007) CFD simulation of bubbly flows: random dispersion model. Chem Eng Sci 62:7140–7150

    Article  Google Scholar 

  • Fiedler-Ferrari N, Nussenzweig HM, Wiscombe WJ (1991) Theory of near-critical-angle scattering from acurved interface. Phys Rev A 43:1005–1038

    Article  Google Scholar 

  • Goodman JW (1996) Introduction to fourier optics. McGraw-Hill, New York

    Google Scholar 

  • Gouesbet G, Maheu B, Gréhan G (1988) Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J Opt Soc Am A 5:1427–1443

    Article  Google Scholar 

  • Gréhan G, Onofri F, Girasole T, Gouesbet G (1994) Measurement of bubbles by Phase Doppler Technique and Trajectory Ambiguity. In: Adrian RJ, Durao DFG, Heitor MV (eds) Selected papers from the 8th international symposium, Lisbon, Portugal, 11–14 July 1994. Springer, New York, pp 290–302

  • Langley DS, Marston PL (1984) Critical scattering of laser light from bubbles in water: measurements, models, and application to sizing bubbles. Appl Opt 23:1044–1054

    Article  Google Scholar 

  • Lawson CL, Hanson RJ (1974) Solving least squares problems. Englewood Cliffs, Prentice-Hall

    MATH  Google Scholar 

  • Lötsch HKV (1971) Beam displacement at total reflection: the Goos-Hänchen effect. Optick 32:553–569

    Google Scholar 

  • Marston PL (1979) Critical scattering angle by a bubble: physical optics approximation and observations. J Opt Soc Am A 69:1205–1211

    Article  Google Scholar 

  • Marston PL, Kingsbury DL (1981) Scattering by a bubble in water near the critical angle: interference effects. J Opt Soc Am A 71:358–361

    Article  Google Scholar 

  • Nussenzveig HM (1992) Diffraction effects in semiclassical scattering. Cambridge University Press, Cambridge

    Google Scholar 

  • Nussenzveig HM, Wiscombe WJ (1980) Efficiency factors in Mie scattering. Phys Rev Lett 34:1490–1494

    Article  Google Scholar 

  • Onofri F (1999) Critical angle refractometry: for simultaneous measurement of particles in flow size and relative refractive index. Part Part Syst Charact 16:119–127

    Article  Google Scholar 

  • Onofri F, Gréhan G, Gouesbet G (1995) Electromagnetic scattering from a multilayered sphere located in an arbitrary beam. Appl Optics 34:7113–7124

    Article  Google Scholar 

  • Onofri F, Lenoble A, Bultynck B, Guéring P-H (2004) High-resolution laser diffractometry for the on-line sizing of small transparent fibres. Opt Commun 234:183–191

    Article  Google Scholar 

  • Onofri F, Krzysiek M, Mroczka J (2006) Generalisation of the critical angle refractometry for the characterisation of clouds of bubbles. In: Proceedings of the 13th international symposium on applications of laser techniques to fluid mechanics. Insituto Superior Técnico, Lisbon, 7.3.1, Lisbon, June

  • Onofri F, Krzysiek M, Mroczka J (2007) Critical angle refractometry and sizing for bubbly flow characterization. Opt Lett 32:2070–2072

    Article  Google Scholar 

  • Onofri F, Krzysiek M, Mroczka J, Ren KF, Radev S (2008) Collective critical angle scattering for bubble clouds characterization. In: Proceedings of the 14th international symposium on applications of laser techniques to fluid mechanics. Insituto Superior Técnico, Lisbon, 4.2.2, Lisbon, July

  • Qiu HH, Hsu HT (2004) The impact of high order refraction on optical microbubble sizing in multiphase flows. Exp Fluids 26:100–107

    Article  Google Scholar 

  • Radev S, Onofri F, Tadrist L (2007) Sinuous instability of a viscous capillary jet injected into an immiscible non-viscous fluid, Part II: different forms and numerical analysis of the dispersion equation. J Theor Appl Mech 37(2):15–32

    MathSciNet  Google Scholar 

  • Ren KF, Grehan G, Gouesbet G (1994) Evaluation of laser sheet beam shape coefficients in generalized Lorenz-Mie theory by using a localized approximation. J Opt Soc Am A 11(7):2072–2079

    Article  Google Scholar 

  • Ren KF, Grehan G, Gouesbet G (1997) Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results. J Opt Soc Am A 14(11):3014–3025

    Article  MathSciNet  Google Scholar 

  • Sommerfeld M (2003) Bubbly flows: analysis, modelling, and calculation. Springer, New York

    Google Scholar 

  • Tryggvason G, Esmaeeli A, Lu J, Biswas S (2006) Direct numerical simulations of gas/liquid multiphase flows. Fluid Dyn Res 38:660–681

    Article  MATH  MathSciNet  Google Scholar 

  • Twomey S (1979) Introduction to the mathematics in remote sensing and indirect measurement. Elsevier, New York

    Google Scholar 

  • van Beeck JPA (1997) Rainbow phenomena: on development of a laser-based, non intrusive technique for measuring droplet size, temperature and velocity. Technical University of Eidoven, The Netherlands

  • van de Hulst HC (1957) Light scattering by small particles. Dover Publications, New York

    Google Scholar 

  • Vetrano MR, van Beeck JPAJ, Riethmuller ML (2005) Assessment of refractive index gradients by standard rainbow thermometry. Appl Opt 44(34):7275–7281

    Article  Google Scholar 

  • Wiscombe WJ (2006) ftp://climate1.gsfc.nasa.gov/wiscombe/. NASA Goddard Space Flight Center, Greenbelt, USA

  • Xu R (2001) Particle characterization light scattering methods. Kluwer, Miami

    Google Scholar 

  • Xu F, Ren KF, Cai X, Gouesbet G, Grehan G (2007) Generalized Lorenz-Mie theory for arbitrarily oriented, located and shaped beam scattering by a homogeneous spheroid. J Opt Soc Am A 24(1):119–131

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the French embassy in Poland (MAE) and the Polish KBN (PhD grant and project Polonium-2007 n° 17801XJ) as well as to the CNRS and the Bulgarian Academy of Science (convention d’échange CNRS/ABS n° 18797) for providing financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice R. A. Onofri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onofri, F.R.A., Krzysiek, M., Mroczka, J. et al. Optical characterization of bubbly flows with a near-critical-angle scattering technique. Exp Fluids 47, 721–732 (2009). https://doi.org/10.1007/s00348-009-0649-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-009-0649-y

Keywords

Navigation