Skip to main content
Log in

Comparative glaucomatous diagnosis using macular optical coherence tomography and perimetry with centrally condensed stimuli

English version

Korrelation morphologischer und funktioneller Glaukomdiagnostik mit makulärem OCT und Perimetrie mit dichtem zentralem Prüfpunktraster

Englische Version

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Abstract

The presentation and measurement of the internal retinal layers by current optical coherence tomography (OCT) instruments allow a precise topographic localization of macular glaucomatous damage. Ganglion cell analysis in particular can reveal slight central defects and can effectively be correlated with perimetric strategies with centrally condensed stimuli, so that small glaucomatous defects can be confirmed earlier and more confidently. Progression can also be verified in the early stages of the disease as enlargement and deepening of small localized defects. Macular OCT (mOCT) cannot sufficiently detect peripheral glaucomatous defects and may be impaired by macular pathologies; therefore, mOCT should be combined with other morphometric examinations. In order to take advantage of the technical capabilities of current OCT devices appropriate perimetric strategies should also be applied. As the algorithms for documentation and evaluation of the results of current OCT instruments are far less advanced than the technical capabilities, OCT results still have to be visually scrutinized together with the visual field results to benefit from the technical possibilities provided by modern OCT devices.

Zusammenfassung

Die Darstellung und Messung der inneren Retinaschichten mit den aktuellen OCT-Geräten erlaubt eine sehr präzise topografische Lokalisation von makulären Glaukomschäden. Vor allem mit der Ganglienzellanalyse lassen sich auch dezente zentrale Veränderungen erfassen und gut mit Perimetriebefunden entsprechend feiner Prüfpunktraster korrelieren. Dadurch lassen sich geringe Glaukomschäden früher und sicherer erfassen. Auch für die Progressionsbeurteilung eignet sich das makuläre OCT – zumindest in den Frühstadien – sehr gut, da sich die Progression auch von kleinen umschriebenen Defekten gut darstellen lässt. Makuläre OCT-Untersuchungen erfassen periphere Glaukomschäden nicht ausreichend und können durch Makulopathien erheblich beeinträchtigt werden, sodass sie immer im Zusammenhang mit anderen morphometrischen Untersuchungen betrachtet werden sollten. Da die Algorithmen der Befunddokumentation und -auswertung der OCT-Geräte den technischen Möglichkeiten noch erheblich hinterherhinken, hat die sorgfältige visuelle Analyse der OCT- und Perimetriebefunde immer noch große Bedeutung, wenn man die technischen Möglichkeiten, die die mOCT-Untersuchung bietet, ausnutzen möchte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

GCC:

ganglion cell complex

GCL:

ganglion cell body layer

GCL+:

ganglion cell body layer plus inner plexiform layer

VF:

visual field

IPL:

inner plexiform layer

MD:

mean deviation

LV:

loss variance

mOCT:

macular optical coherence tomography

MVZ:

macular vulnerability zone

NFL:

nerve fiber layer

OCT:

ocular coherence tomography

PD:

pattern deviation

pRNLF:

peripapillary retinal nerve fiber layer

References

  1. Aulhorn E, Harms M (1967) Early visual field defects in glaucoma. In: Leydhecke W (ed) Glaucoma, tutzing symposium. Karger, Basel, pp 151–186

  2. Aulhorn E, Karmeyer H (1977) Frequency distribution in early glaucomatous visual field defects. Doc Ophthalmol Proc Ser 14:75–83

    Google Scholar 

  3. Schiefer U, Papageorgiou E, Sample PA et al (2010) Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci 51:5685–5689

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hood DC, Raza AS, de Moraes VGV et al (2013) Glaucomatous damage of the macula. Progr Retin Eye Res 32:1–21

    Article  Google Scholar 

  5. De Moraes CGV, Liebmann JM, Ritch R et al (2012) Understanding disparities among diagnostic technologies in glaucoma. Arch Ophthalmol 130:833–840

    Article  PubMed Central  PubMed  Google Scholar 

  6. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25

    Article  CAS  PubMed  Google Scholar 

  7. Drasdo N, Millican CL, Katholi CR et al (2007) The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res 47:2901–2911

    Article  PubMed Central  PubMed  Google Scholar 

  8. Curcio CA, Messinger JD, Sloan KR et al (2011) Human chorioretinal layer thickness measured in macula-wide, high resolution histologic sections. Invest Ophthalmol Vis Sci 52:3943–3954

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sigelmann J, Ozanics V (1985) Retina. In: Duane TD, Jaeger EA (eds) Biomedical foundations of ophthalmology, Vol 1. Harper & Row, Philadelphia, S 1–66 (Chap. 19)

  10. Wabbels BK, Diehm S, Kolling G (2005) Continuous light increment perimetry compared to full threshold strategy in glaucoma. Eur J Ophthalmol 15:722–729

    CAS  PubMed  Google Scholar 

  11. Hood DC, Nguyen M, Ehrlich AC et al (2014) A test model of glaucomatous damage of the macula with high-density perimetry: implications fo the locations of visual field test points. Tans Vis Sci Technol 3:5

    Article  Google Scholar 

  12. Traynis I, Moraes CG, Raza AS, Liebmann JM, Ritch R, Hood DC (2014) Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. JAMA Ophthalmol 132:291–297

    Article  PubMed Central  PubMed  Google Scholar 

  13. Park SC, Kung Y, Su D et al (2013) Parafoveal scotoma progression in glaucoma: humphrey 10-2 versus 24-2 visual field analysis. Opthalmology 120:1546–1550

    Article  Google Scholar 

  14. De Moraes CGV, Liebmann JM, Ritch R, Hood DC (2012) Understanding disparities among diagnostic technologies in glaucoma. Arch Ophthalmol 130:833–840

    Article  PubMed Central  PubMed  Google Scholar 

  15. Leung CK, Ye C, Weinreb RN et al (2013) Impact of age-related change of retinal nerve fiber layer and macular thickness on evaluation of glaucoma progression. Ophthalmology 120:2485–92

    Article  PubMed  Google Scholar 

  16. Matlach J, Wagner M, Malzahn U et al (2014) Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices. Invest Opthalmol Vis Sci 55:6536–6546

    Article  Google Scholar 

  17. Bussel II, Wollstein G, Schumann JS (2014) OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol 98(Suppl 2):ii15–ii19

    Article  PubMed Central  PubMed  Google Scholar 

  18. Naghizadeh F, Garas A, Vargha P et al (2014) Detection of early glaucomatous progression with different parameters of the RTVue optical coherence tomograph. J Glaucoma 23:195–198

    Article  PubMed  Google Scholar 

  19. Tonagel F, Voykov B, Schiefer U (2012) Conventional perimetry. Antiquated or indispensable for functional glaucoma diagnostics? Ophthalmologe 109:325–336

    Article  CAS  PubMed  Google Scholar 

  20. Harwerth RS, Quigley HA (2006) Visual field defects and retinal ganglion cell losses in human glaucoma. Arch Opthalmol 124:853–859

    Article  Google Scholar 

  21. Kawaguchi C, Nakatani Y, Okhubo S et al (2014) Structural and functional assessment by hemisheric asymmetry testing of the macular region in preperimetric glaucoma. Jpn J Ophthalmol 58:197–204

    Article  PubMed  Google Scholar 

  22. Lee SY, Jeoung YW, Park KH et al (2015) Macular ganglion cell imaging study: interocular symmetry of ganglion cell-inner plexiform layer thickness in normal healthy eyes. Am J Ophthalmol 159:315–323

    Article  PubMed  Google Scholar 

  23. Hood DC, Slobodnick A, Raza AS et al (2014) Early glaucoma involves both deep local and shallow widespread retinal nerve fibrer damage of the macular region. Invest Ophthalmol Vis Sci 55:632–649

    Article  PubMed Central  PubMed  Google Scholar 

  24. Raza AS, Zhang X, De Moraes CGV et al (2014) Improving glaucoma detection using spatially corrrespondent clusters of damage and by combining standard automated perimetry and optical coherence tomography. Invest Ophthalmol Vis Sci 55:612–624

    Article  PubMed Central  PubMed  Google Scholar 

  25. Malik R, Swanson WH, Garway-Heath DF (2012) The ‘structure-function’ relationship in glaucoma – past thinking and current concepts. Clin Experiment Ophthalmol 40:369–380

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hood DC, Raza AS (2014) On improving the use of OCT imaging for detection of glaucomatous damage. Br J Ophthalmol 98(Suppl 2):ii1–ii9

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Corinna Vogel, Heike Tretschog, Jeanette Böttger, and Elke Spielmann for their continuous engagement in VF and OCT examinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Noske.

Ethics declarations

Conflict of interests

A. Sturm and W. Noske state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sturm, A., Noske, W. Comparative glaucomatous diagnosis using macular optical coherence tomography and perimetry with centrally condensed stimuli. Ophthalmologe 113 (Suppl 1), 1–12 (2016). https://doi.org/10.1007/s00347-015-0104-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-015-0104-9

Keywords

Schlüsselwörter

Navigation