Skip to main content
Log in

Study of pattern transition in nanopatterned Si(100) produced by impurity-assisted low-energy ion-beam erosion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, formation of self-organized Si nanostructures induced by pure Fe incorporation during normal incidence low-energy (1keV) Ar\(^+\) ion bombardment is presented. It has been observed that the incorporation of Fe affects the evolution of the surface topography. The addition of Fe generates pronounced nanopatterns, such as dots, ripples and combinations of dots and ripples. The orientation of the ripple wave vector of the patterns formed is found to be in a direction normal to the Fe flow. The nanoripples with wavelength of the order of 39 nm produced is expected to be the lowest wavelength of the patterns reported on ion-beam-eroded structures under the incorporation of metallic impurities as per our knowledge. From the AFM and GISAXS analysis, it has been confirmed that the ripples formed are asymmetric in nature. The effect of the concentration of the Fe on morphological transition of the patterns has been studied using Rutherford backscattering measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Boragno, R. Felici, Synchrotron X-ray scattering from metal surfaces nanostructured by IBS. J. Phys. Condens. Matter 21, 224006 (2009)

    Article  ADS  Google Scholar 

  2. W.L. Chan, E. Chason, Sputter ripples and radiation-enhanced surface kinetics on Cu(001). Phys. Rev. B 72, 165418 (2005)

    Article  ADS  Google Scholar 

  3. K.V. Sarathlal, S. Potdar, M. Gangrade, V. Ganesan, A. Gupta, Azimuthal angle dependence of nanoripple formation on Si (100) by low energy ion erosion. Adv. Mat. Lett. 4, 398–401 (2013)

    Article  Google Scholar 

  4. A.-D. Brown, J. Erlebacher, Temperature and fluence effects on the evolution of regular surface morphologies on ion-sputtered Si(111). Phys. Rev. B 72, 075350 (2005)

    Article  ADS  Google Scholar 

  5. X. Ou, A. Keller, M. Helm, J. Fassbender, S. Facsko, Reverse epitaxy of Ge: ordered and faceted surface patterns. Phy. Rev. Lett. 111, 016101 (2013)

    Article  ADS  Google Scholar 

  6. X. Ou, K.H. Heinig, R. Hübner, J. Grenzer, X. Wang, M. Helm, J. Fassbender, S. Facsko, Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies. Nanoscale 7, 18928 (2015)

    Article  ADS  Google Scholar 

  7. R.L. Headrick, H. Zhou, Ripple formation and smoothening on insulating surfaces. J. Phys. Condens. Matter 21, 224005 (2009)

    Article  ADS  Google Scholar 

  8. A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S.R. Bhattacharyya, C. Boragno, U. Valbusa, Ion beam erosion of amorphous materials: evolution of surface morphology. Nucl. Instrum. Methods B 230, 551 (2005)

    Article  ADS  Google Scholar 

  9. Q. Weia, J. Lianb, S. Zhuc, W. Lia, K. Suna, L. Wang, Ordered nanocrystals on argon ion sputtered polymer film. Chem. Phy. Lett. 452, 124128 (2008)

    Google Scholar 

  10. R.M. Bradley, M. Harper, Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Technol. A 6, 2390 (1988)

    Article  ADS  Google Scholar 

  11. R. Cuerno, A.L. Barabsi, Dynamic scaling of ion-sputtered surfaces. Phys. Rev. Lett. 74, 4746 (1995)

    Article  ADS  Google Scholar 

  12. G. Carter, V. Vishnyakov, Roughening and ripple instabilities on ion-bombarded Si. Phys. Rev. B 54, 17647 (1996)

    Article  ADS  Google Scholar 

  13. S. Rusponi, C. Boragno, U. Valbusa, Ripple structure on Ag (110) surface induced by ion sputtering. Phys. Rev. Lett. 78, 2795 (1997)

    Article  ADS  Google Scholar 

  14. M.A. Makeev, A.L. Barabsi, Ion-induced effective surface diffusion in ion sputtering. Appl. Phys. Lett. 71, 2800 (1997)

    Article  ADS  Google Scholar 

  15. J. Erlebacher, M.J. Aziz, E. Chason, M.B. Sinclair, J.A. Floro, Sputter rippling kinetics of Si(001): pattern forming instabilities on the atomic scale. Phys. Rev. Lett. 82, 2330 (1999)

    Article  ADS  Google Scholar 

  16. S.V. Roth, G. Santoro, J.F.H. Risch, S. Yu, M. Schwartzkopf, T. Boese, R. Döhrmann, P. Zhang, B. Besner, P. Bremer, D. Rukser, M.A. Rübhausen, N.J. Terrill, P.A. Staniec, Y. Yao, E. Metwalli, P. Müller-Buschbaum, Patterned diblock co-polymer thin films as templates for advanced anisotropic metal nanostructures. ACS Appl. Mater. Interfaces 7, 12470 (2015)

    Article  Google Scholar 

  17. K.V. Sarathlal, D. Kumar, A. Gupta, Growth study of Co thin film on nanorippled Si (100) substrate. Appl. Phys. Lett. 98, 12311 (2011)

    Google Scholar 

  18. K.V. Sarathlal, D. Kumar, V. Ganesan, A. Gupta, In-situ study of magnetic thin films on nanorippled Si (1 0 0) substrates. Appl. Surf. Sci. 258, 41164121 (2012)

    Google Scholar 

  19. M.A. Arranz, J.M. Colino, F.J. Palomares, On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern. J. Appl. Phy. 115, 183906 (2014)

    Article  ADS  Google Scholar 

  20. K. Chen, R. Frömter, S. Rössler, N. Mikuszeit, H.P. Oepen, Uniaxial magnetic anisotropy of cobalt lms deposited on sputtered MgO (001) substrates. Phys. Rev. B 86, 064432 (2012)

    Article  ADS  Google Scholar 

  21. M.O. Liedke, M. Krner, K. Lenz, F. Grossmann, S. Facsko, J. Fassbender, Magnetic anisotropy engineering: single-crystalline Fe films on ion eroded ripple surfaces. Appl. Phys. Lett 100, 242405 (2012)

    Article  ADS  Google Scholar 

  22. M. Ranjan, T.W.H. Oates, S. Facsko, W. Möller, Optical properties of silver nanowire arrays with 35 nm periodicity. Opt. Lett. 35, 2576 (2010)

    Article  ADS  Google Scholar 

  23. S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, F. Pailloux, Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion. Phys. Rev. B 80, 155434 (2009)

    Article  ADS  Google Scholar 

  24. J. Erlebacher, M.J. Aziz, Spontaneous pattern formation on ion bombarded Si (001). Phys. Rev. Lett. 82, 2330–2333 (1999)

    Article  ADS  Google Scholar 

  25. F. Frost, B. Rauschenbach, Nanostructuring of solid surfaces by ion-beam erosion. Appl. Phys. A Mater. Sci. Process. 77, 1–9 (2003)

    Article  ADS  Google Scholar 

  26. B. Ziberi, F. Frost, Th Höche, B. Rauschenbach, Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: experiment and theory. Phy. Rev. B 72, 235310 (2005)

    Article  ADS  Google Scholar 

  27. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H.L. Hartnagel, Formation of ordered nanoscale semiconductor dots by ion sputtering. Science 285, 1551–1553 (1999)

    Article  Google Scholar 

  28. K. Zhang, M. Brötzmann, H. Hofsäss, Surfactant-driven self-organized surface patterns by ion beam erosion. New. J. Phys. 13, 013033 (2011)

    Article  ADS  Google Scholar 

  29. O. El-Atwani, S. Gonderman, A. DeMasi, A. Suslova, J. Fowler, M. ElAtwani, K. Ludwig, J.P. Allain, Nanopatterning of metal-coated silicon surfaces via ion beam irradiation: real time X-ray studies reveal the effect of silicide bonding. J. Appl. Phys. 113, 124305 (2013)

    Article  ADS  Google Scholar 

  30. S.K. Vayalil, A. Gupta, S.V. Roth, V. Ganesan, Investigation of the mechanism of impurity assisted nanoripple formation on Si induced by low energy ion beam erosion. J. Appl. Phy. 117, 024309 (2015)

    Article  ADS  Google Scholar 

  31. S. Macko, F. Frost, B. Ziberi, D.F. Förster, T. Michely, Is keV ion-induced pattern formation on Si (001) caused by metal impurities? Nanotechnology 21, 085301 (2010)

    Article  ADS  Google Scholar 

  32. J.A. Sánchez-García, L. Vzquez, R. Gago, A. Redondo-Cubero, J.M. Albella, Z. Czigány, Tuning the surface morphology in self-organized ion beam nanopatterning of Si(001) via metal incorporation: from holes to dots. Nanotechnology 19, 355306 (2008)

    Article  Google Scholar 

  33. B. Khanbabaee, B. Arezki, A. Biermanns, M. Cornejo, D. Lützenkirchen-Hecht, D. Hirsch, F. Frost, U. Pietsch, Depth prole investigation of the incorporated iron atoms during Kr+ ion beam sputtering on Si (001). Thin Solid Films 527, 349353 (2013)

    Article  Google Scholar 

  34. R.M. Bradley, P.D. Shipman, Spontaneous pattern formation induced by ion bombardment of binary compounds. Phys. Rev. Lett. 105, 145501 (2010)

    Article  ADS  Google Scholar 

  35. J. Zhou, M. Lu, Mechanism of Fe impurity motivated ion-nanopatterning of Si (100) surfaces. Phys. Rev. B 82, 125404 (2010)

    Article  ADS  Google Scholar 

  36. R.M. Bradley, Nanoscale patterns produced by ion erosion of a solid with codeposition of impurities: the crucial effect of compound formation. Phy. Rev. B 87, 205408 (2013)

    Article  ADS  Google Scholar 

  37. R.M. Bradley, P.D. Shipman, A surface layer of altered composition can play a key role in nanoscale pattern formation induced by ion bombardment. Appl. Surf. Sci. 258, 4161–4170 (2012)

    Article  ADS  Google Scholar 

  38. H. Hofsäss, K. Zhang, Surfactant sputtering. Appl. Phys. A 92, 517–524 (2008)

    Article  ADS  Google Scholar 

  39. G. Ozaydin, A.S. Özcan, Y. Wang, K.F. Ludwig, H. Zhou, R.L. Headrick, D.P. Siddons, Real-time X-ray studies of Mo-seeded Si nanodot formation during ion bombardment. Appl. Phys. Lett. 87, 163104 (2005)

    Article  ADS  Google Scholar 

  40. K. Zhang, O. Bobes, H. Hofsäss, Designing self organized nanopatterns on Si by ion irradiation and metal co-deposition. Nanotechnology 25, 085301 (2014)

    Article  ADS  Google Scholar 

  41. A. Hubert, R. Schäfer, Magnetic domains (Springer, Berlin, 1998)

    Google Scholar 

  42. D. Nečas, P. Klapetek, Gwyddion: open-source software for SPM data analysis. Cent. Eur. J. Phys. 10(1), 181 (2012)

    Google Scholar 

  43. P. Klapetek, D. Nečas, C. Anderson, Gwyddion user guide. http://gwyddion.net/documentation/ (2009)

  44. M. Mayer, SIMNRA users guide, Max-Planck-Institut fr Plasmaphysik, Report IPP 9/113 (Garching, Germany, 1997)

    Google Scholar 

  45. A. Buffet, A. Rothkirch, R. Döhrmann, V. Körstgens, M.M.A. Kashem, J. Perlich, G. Herzog, M. Schwartzkopf, R. Gehrke, P. Müller-Buschbaum, S.V. Roth, P03, the microfocus and nanofocus X-ray scattering (MiNaXS) beamline of the PETRA III storage ring: the microfocus endstation. J. Synchr. Radiation 19, 647653 (2012)

    Article  Google Scholar 

  46. G. Santoro, A. Buffet, R. Döhrmann, S. Yu, V. Körstgens, P. Müller-Buschbaum, U. Gedde, M. Hedenqvist, S.V. Roth, Use of intermediate focus for grazing incidence small and wide angle X-ray scattering experiments at the beamline P03 of PETRA III, DESY. Rev. Sci. Instrum. 85, 043901 (2014)

    Article  ADS  Google Scholar 

  47. G. Benecke, W. Wagermaier, C. Li, M. Schwartzkopf, G. Flucke, R. Hoerth, I. Zizak, M. Burghammer, E. Metwalli, P. Müller-Buschbaum, M. Trebbin, S. Förster, O. Paris, S.V. Roth, P. Fratzl, A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering. J. Appl. Cryst. 47, 1797–1803 (2014)

    Article  Google Scholar 

  48. P. Müller-Buschbaum, Grazing incidence small-angle X-ray scattering: an advanced scattering technique for the investigation of nanostructured polymer films. Anal. Bioanal. Chem. 376, 3–10 (2003)

    Article  Google Scholar 

  49. W.K. Chu, J.W. Mayer, M.A. Nicholet, Backscattering spectrometry (Academic, New York, 1978)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. V Ganesan, Mohan Gangarade, UGC DAE CSR, Indore, for AFM measurements, and Dr. S. Balaji and Dr. B.S. Panigrahi, IGCAR, Kalpakkam, India, for RBS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarathlal Koyiloth Vayalil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyiloth Vayalil, S., Gupta, A. & Roth, S.V. Study of pattern transition in nanopatterned Si(100) produced by impurity-assisted low-energy ion-beam erosion. Appl. Phys. A 123, 225 (2017). https://doi.org/10.1007/s00339-017-0756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0756-1

Keywords

Navigation