Skip to main content
Log in

Grazing incidence small-angle X-ray scattering: an advanced scattering technique for the investigation of nanostructured polymer films

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hamburg workshop on the "application of synchrotron radiation in chemistry"

With grazing incidence small-angle X-ray scattering (GISAXS) the limitations of conventional small-angle X-ray scattering with respect to extremely small sample volumes in the thin-film geometry are overcome. GISAXS turned out to be a powerful advanced scattering technique for the investigation of nanostructured polymer films. Similar to atomic force microscopy (AFM), a large interval of length between molecular and mesoscopic scales is detectable with a surface-sensitive scattering method. While with AFM only surface topographies are accessible, with GISAXS the buried structure is also probed. Because a larger surface area is probed, GISAXS also has a much larger statistical significance compared to AFM. Due to the high demand on collimation, GISAXS experiments are based on synchrotron radiation. Nanostructures parallel and perpendicular to the sample surface observable in thin poly(styrene-block-isoprene) diblock copolymer films are presented as an example of the possibilities of GISAXS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a,b.
Fig. 3.
Fig. 4. a
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Russell TP (2002) Science 297:964

    Article  CAS  PubMed  Google Scholar 

  2. Bauer G, Pittner F, Schalkhammer T (1999) Mikrochim Acta 131:107

    CAS  Google Scholar 

  3. Thurn-Albrecht T, Schotter J, Kästle GA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Science 290:2126

    Article  CAS  PubMed  Google Scholar 

  4. Spatz JP, Möller M, Noeske M, Behm RJ, Pietralla M (1997) Macromolecules 30:3874

    CAS  Google Scholar 

  5. Bhat RR, Fischer DA, Genzer J (2002) Langmuir 18:5640

    Article  CAS  Google Scholar 

  6. Müller-Buschbaum P, Wolkenhauer M, Wunnicke O, Stamm M, Cubitt R, Petry W (2001) Langmuir 17:5567

    Article  Google Scholar 

  7. Dalgliesh R (2002) Curr Opin Colloid Interf Sci 7:244

    Article  CAS  Google Scholar 

  8. Sehgal A, Ferreiro V, Douglas JF, Amis EJ, Karim A (2002) Langmuir 18:7041

    Article  CAS  Google Scholar 

  9. Bonaccurso E, Butt HJ, Franz V, Graf K, Kappl M, Loi S, Niesenhaus B, Chemnitz S, Böhm M, Petrova B, Jonas U, Spieß HW (2002) Langmuir 18:8056

    Article  CAS  Google Scholar 

  10. James RW (1962) In: The optical principles of the diffraction of X-rays. OxBow Press, Woodbridge Connecticut

  11. Müller-Buschbaum P, Vanhoorne P, Scheumann V, Stamm M (1997) Europhys Lett 40:655

    Google Scholar 

  12. Müller-Buschbaum P, Stamm M (1998) Physica B 248:229

    Google Scholar 

  13. Müller-Buschbaum P, Casagrande M, Gutmann JS, Kuhlmann T, Stamm M, Cunis S, von Krosigk G, Lode U, Gehrke R (1998) Europhys Lett 42:517

    Google Scholar 

  14. Müller-Buschbaum P, Gutmann JS, Stamm M (1999) Phys Chem Chem Phys 1:3857

    Article  Google Scholar 

  15. Smilgies DM, Busch P, Papadakis CM, Posselt D (2002) Synchrotron Rad News 5:35

    Google Scholar 

  16. Sinha SK, Sirota EB, Garoff S, Stanley HB (1988) Phys Rev B 38:2297

    Article  Google Scholar 

  17. Holy V, Baumbach T (1994) Phys Rev B 49:10668

    Article  CAS  Google Scholar 

  18. Tolan M, Press W (1998) Z Kristallog 213:319

    CAS  Google Scholar 

  19. Salditt T, Metzger TH, Peisl J, Goerigk G (1995) J Phys D Appl Phys 28:A236

    Article  CAS  Google Scholar 

  20. Schmidbauer M, Wiebach T, Raidt H (1998) Phys Rev B 58:10523

    Article  CAS  Google Scholar 

  21. Metzger TH, Kegel I, Paniago R, Peisl J (1999) J Phys D Appl Phys 32:A202

    Article  CAS  Google Scholar 

  22. Naudon A, Babonneau D, Thiaudiere D, Lequien S (2000) Physica B 283:69

    Article  CAS  Google Scholar 

  23. Hamley IW (1998) The physics of block copolymers. Oxford University Press, Oxford

  24. Alexandridis P, Spontak RJ (1999) Curr Opin Coll Inter Sci 4:130

    Article  CAS  Google Scholar 

  25. Fredrickson GH (1987) Macomolecules 20:2535

    CAS  Google Scholar 

  26. Turner MS (1992) Phys Rev Lett 69:1788

    Article  CAS  PubMed  Google Scholar 

  27. Mansky P, Tsui OKC, Russell TP, Gallot Y (1999) Macromolecules 32:4832

    Article  CAS  Google Scholar 

  28. Lawrence CJ (1988) Phys Fluids 31:2786

    Article  CAS  Google Scholar 

  29. Spangler LL, Torkelson M, Royal JS (1990) Polym Eng Sci 30:644

    CAS  Google Scholar 

  30. Schubert DW (1997) Polymer Bulletin 38:177

    Article  CAS  Google Scholar 

  31. Müller-Buschbaum P, Hermsdorf N, Gutmann JS, Stamm M, Cunis S, Gehrke R, Petry W (2003) J Macromol Sci Phys (in press)

  32. Sakamoto N, Hashimoto T (1998) Macromolecules 31:3292

    Article  CAS  Google Scholar 

  33. Sakamoto N, Hashimoto T (1998) Macromolecules 31:3815

    Article  CAS  Google Scholar 

  34. Kunz K, Anastasiadis SH, Stamm M, Schurrat T, Rauch F (1999) Euro Phys J 7:411

    Article  CAS  Google Scholar 

  35. Hadjichristidis N, Roovers JEL (1982) J Polym Sci Polym Phys Eds 20:743

    CAS  Google Scholar 

  36. Wiesner U (1997) Macromol Chem Phys 198:3319

    CAS  Google Scholar 

  37. Leist H, Marning D, Thurn-Albrecht T, Wiesner U (1999) J Chem Phys 110:8225

    Article  CAS  Google Scholar 

  38. Förster S, Khandpur AK, Zhao J, Bates FS, Hamley IW, Ryan AJ, Bras W (1994) Macromolecules 27:6922

    Google Scholar 

  39. Gehrke R (1992) Rev Sci Instrum 63:455

    Article  Google Scholar 

  40. Yoneda Y (1963) Phys Rev 131:2010

    Article  Google Scholar 

  41. Salditt T, Metzger TH, Peisl J, Reinecker B, Moske M, Samer K (1995) Europhys Lett 32:331

    CAS  Google Scholar 

  42. Müller-Buschbaum P, Stamm M (1998) Macromolecules 31:3686

    Article  Google Scholar 

  43. Müller-Buschbaum P, Gutmann JS, Lorenz C, Schmitt T, Stamm M (1998) Macromolecules 31:9265

    Article  Google Scholar 

  44. Kraus J, Müller-Buschbaum P, Bucknall DG, Stamm M (1999) J Polym Sci Physics 37:2862

    Article  CAS  Google Scholar 

  45. Müller-Buschbaum P, Gutmann JS, Lorenz-Haas C, Mahltig B, Stamm M, Petry W (2001) Macromolecules 34:7463

    Article  Google Scholar 

  46. Gutmann JS, Müller-Buschbaum P, Schubert DW, Stribeck N, Smilgies D, StammM (2001) Physica B 283:40

    Google Scholar 

Download references

Acknowledgements

S. Cunis helped during the build-up of the experimental set-up at the BW4 beamline at the HASYLAB. During beamtimes A. Götzendorfer, S. Loi, E. Maurer, P. Panagiotou and T. Titz were members of several experimental teams. W. Fenzl (MPI-KGF Golm) and R. Gehrke generally supported the experiments at HASYLAB. Financial support by the BMBF (Förderkennzeichen 03MBE3M1) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Müller-Buschbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Buschbaum, P. Grazing incidence small-angle X-ray scattering: an advanced scattering technique for the investigation of nanostructured polymer films. Anal Bioanal Chem 376, 3–10 (2003). https://doi.org/10.1007/s00216-003-1869-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1869-2

Keywords

Navigation