Skip to main content
Log in

Reconfigurable subwavelength waveguide based on magnetic metamaterial

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The design and characterization is described of a reconfigurable subwavelength waveguide based on magnetic metamaterial. The waveguide is capable of reconfiguring its propagating mode from right-handed to left-handed, which can be applied in the design of novel microwave and RF devices such as leaky wave antennas with broadened scanning range. The waveguide consists of a rectangular metallic waveguide loaded by two pieces of different magnetic metamaterials, which are structured by the same cells—modified split ring resonators (MSRRs)—with different arrangements. Positions of the two pieces of metamaterials in the waveguide can be reconfigured separately by the control mechanism. The simulated transmission data show that the waveguide has a passband below the cutoff frequency of the hollow waveguide either in the left-handed case or in the right-handed case. The extracted constitutive parameters have demonstrated that the effective permittivity and permeability of the waveguide are simultaneously negative in the left-handed case and positive in the right-handed case. The magnetic field and surface current distributions in the waveguide confirm that the waveguide operates as can be expected. The influence of the control mechanism on the performance of the waveguide is studied. It is shown that the influence is so minor that it can be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Degiron, D.R. Smith, J.J. Mock, B.J. Justice, J. Gollub, Appl. Phys. A 87, 321–328 (2007)

    Article  ADS  Google Scholar 

  2. C. Caloz, H.V. Nguyen, Appl. Phys. A 87, 309–316 (2007)

    Article  ADS  Google Scholar 

  3. V. Yannopapas, Appl. Phys. A 87, 259–264 (2007)

    Article  ADS  Google Scholar 

  4. I.I. Smolyaninov, Appl. Phys. A 87, 227–234 (2007)

    Article  ADS  Google Scholar 

  5. E.V. Ponizovskaya, A.M. Bratkovsky, Appl. Phys. A 95, 1137–1142 (2009)

    Article  ADS  Google Scholar 

  6. V.J. Logeeswaran, A.N. Stameroff, M.S. Islam, W. Wu, A.M. Bratkovsky, P.J. Kuekes, S.Y. Wang, R.S. Williams, Appl. Phys. A 87, 209–216 (2007)

    Article  ADS  Google Scholar 

  7. T. Driscoll, S. Palit, M.M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S.Y. Cho, N.M. Jokerst, D.R. Smith, D.N. Basov, Appl. Phys. Lett. 93, 024101 (2008)

    Article  ADS  Google Scholar 

  8. B.T. Schwartz, R. Piestun, Appl. Phys. Lett. 85, 1–3 (2004)

    Article  ADS  Google Scholar 

  9. W.X. Jiang, T.J. Cui, G.X. Yu, X.Q. Lin, Q. Cheng, J.Y. Chin, J. Phys. D 41, 085504 (2008)

    Article  ADS  Google Scholar 

  10. R. Marques, F. Mesa, J. Martel, F. Medina, IEEE Trans. Antennas Propag. 51, 2572–2581 (2003)

    Article  ADS  Google Scholar 

  11. R. Marques, L. Jelinek, F. Mesa, Microw. Opt. Technol. Lett. 49, 2606–2609 (2007)

    Article  Google Scholar 

  12. J. Carbonell, L.J. Roglá, V.E. Boria, R. Marqués, J. Appl. Phys. 102, 044902 (2007)

    Article  ADS  Google Scholar 

  13. R. Marques, L. Jelinek, F. Mesa, F. Medina, Opt. Express 17, 11582–11593 (2009)

    Article  ADS  Google Scholar 

  14. R. Marques, J. Martel, F. Mesa, F. Medina, Phys. Rev. Lett. 89, 183901 (2002)

    Article  ADS  Google Scholar 

  15. R. Marques, J. Martel, F. Mesa, F. Medina, Microw. Opt. Technol. Lett. 35, 405–408 (2002)

    Article  Google Scholar 

  16. S. Hrabar, J. Bartolic, Z. Sipus, IEEE Trans. Antennas Propag. 53, 110–119 (2005)

    Article  ADS  Google Scholar 

  17. S. Hrabar, D. Zaluski, Electromagnetics 28, 494–512 (2008)

    Article  Google Scholar 

  18. G. Lubkowski, C. Damm, B. Bandlow, R. Schuhmann, M.S. ßler, T. Weiland, IET Microw. Antennas Propag. 1, 165–169 (2007)

    Article  Google Scholar 

  19. A. Alu, N. Engheta, IEEE Trans. Microw. Theory Tech. 52, 199–210 (2004)

    Article  ADS  Google Scholar 

  20. S. Antipov, L. Spentzouris, W. Gai, M. Conde, F. Franchini, R. Konecny, W. Liu, J.G. Power, Z. Yusof, C. Jing, J. Appl. Phys. 104, 014901 (2008)

    Article  ADS  Google Scholar 

  21. J.D. Baena, L. Jelinek, R. Marques, New J. Phys. 7, 166 (2005)

    Article  ADS  Google Scholar 

  22. H. Bahrami, M. Hakkak, A. Pirhadi, Prog. Electromagn. Res. 80, 107–122 (2008)

    Article  Google Scholar 

  23. H. Xu, Z. Wang, J. Hao, J. Dai, L. Ran, J.A. Kong, L. Zhou, Appl. Phys. Lett. 92, 041122 (2008)

    Article  ADS  Google Scholar 

  24. S. Hrabar, J. Bartolic, Z. Sipus, IEEE Trans. Antennas Propag. 55, 1017–1018 (2007)

    Article  ADS  Google Scholar 

  25. J.-C. Liu, C.-Y. Liu, Y.-S. Hong, C.-Y. Wu, D.-C. Lou, Microw. Opt. Technol. Lett. 49, 201–203 (2007)

    Article  Google Scholar 

  26. I.A. Eshrah, A.A. Kishk, IEEE Trans. Antennas Propag. 55, 355–363 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  27. I.A. Eshrah, A.A. Kishk, A.B. Yakovlev, A.W. Glisson, IEEE Trans. Antennas Propag. 53, 3673–3683 (2005)

    Article  ADS  Google Scholar 

  28. I.A. Eshrah, A.A. Kishk, A.B. Yakovlev, A.W. Glisson, IEEE Trans. Microw. Theory Tech. 53, 3298–3304 (2005)

    Article  ADS  Google Scholar 

  29. F.Y. Meng, Q. Wu, J.H. Fu, X.M. Gu, L.W. Li, Appl. Phys. A 91, 573–578 (2008)

    Article  ADS  Google Scholar 

  30. J. Carbonell, L.J. Rogla, V.E. Boria, D. Lippens, IEEE Trans. Microw. Theory Tech. 54, 1527–1532 (2006)

    Article  ADS  Google Scholar 

  31. F.Y. Meng, Q. Wu, J. Wu, L.W. Li, Appl. Phys. A 87, 329–333 (2007)

    Article  ADS  Google Scholar 

  32. F.-Y. Meng, Q. Wu, L.-W. Li, Appl. Phys. A 94, 747–753 (2009)

    Article  ADS  Google Scholar 

  33. F.-Y. Meng, Y. Liang, Q. Wu, L.-W. Li, Appl. Phys. A 95, 881–888 (2009)

    Article  ADS  Google Scholar 

  34. F.-Y. Meng, Q. Wu, K. Zhang, L.-W. Li, IEEE Trans. Magn. 45, 4329–4332 (2009)

    Article  ADS  Google Scholar 

  35. A. Alu, F. Bilotti, N. Engheta, L. Vegni, IEEE Trans. Antennas Propag. 55, 1698–1708 (2007)

    Article  ADS  Google Scholar 

  36. F.P. Casares-Miranda, C. Camacho-Penalosa, C. Caloz, IEEE Trans. Antennas Propag. 54, 2292–2300 (2006)

    Article  ADS  Google Scholar 

  37. R. Marques, F. Martin, M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications (Wiley, New York, 2007)

    Book  Google Scholar 

  38. P.A. Belov, C.R. Simovski, Phys. Rev. E 72, 036618 (2005)

    Article  ADS  Google Scholar 

  39. R. Marques, F. Medina, R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002)

    Article  ADS  Google Scholar 

  40. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005)

    Article  ADS  Google Scholar 

  41. D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-Yi Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, FY., Zhang, K., Zhang, F. et al. Reconfigurable subwavelength waveguide based on magnetic metamaterial. Appl. Phys. A 102, 509–515 (2011). https://doi.org/10.1007/s00339-010-6177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6177-z

Keywords

Navigation