Skip to main content
Log in

An ultra-small cavity resonator loaded with LHM and RHM layers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, an ultra-small cavity resonator (USCR) loaded with left-handed metamaterial (LHM) and right-handed material (RHM) layers is designed using a novel miniaturization approach. The resonant behavior is successfully observed, and the dimensions of the USCR are only 4.58 mm × 5.08 mm × 2.29 mm at the dominant resonance frequency of 10.3 GHz. Through the field distribution calculation, we confirmed that the miniaturization of the USCR arises from the left-handed property of the LHM. For a practical application, a miniaturized filter with overall length of 10.19 mm consisting of two USCRs is designed to confirm the frequency-selective characteristics. Results show that the filter has some narrow pass bands, which correspond to the resonant modes of the electromagnetic resonance in the USCR, and the insertion loss at the dominant resonance frequency of the USCR is as low as 0.65 dB. Moreover, the filtering characteristics of the filter can be controlled by changing its feeding loop positions in the USCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Pendry, Science 306, 1353 (2004)

    Article  ADS  Google Scholar 

  2. V.G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968)

    Article  Google Scholar 

  3. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  4. K. Buell, H. Mosallaei, K. Sarabandi, IEEE Trans. Microw. Theory Technol. 54, 135 (2006)

    Article  Google Scholar 

  5. S. Lim, C. Caloz, T. Itoh, IEEE Microw. Wireless Compon. Lett. 14, 183 (2004)

    Article  Google Scholar 

  6. J. Perruisseau-Carrier, A.K. Skrivervik, IEEE Trans. Microw. Theory Technol. 54, 1582 (2006)

    Article  Google Scholar 

  7. M.A. Antoniades, G.V. Eleftheriades, IEEE Antennas Propag. 2, 103 (2003)

    Google Scholar 

  8. C. Caloz, A. Sanada, T. Itoh, IEEE Trans. Microw. Theory Technol. 52, 1834 (2004)

    Article  Google Scholar 

  9. R. Islam, F. Elek, G.V. Eleftheriades, Electron. Lett. 40, 315 (2004)

    Article  Google Scholar 

  10. N. Engheta, IEEE Antennas Propag. 1, 10 (2002)

    Google Scholar 

  11. Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T.M. Grzegorczyk, J.A. Kong, IEEE Trans. Microw. Theory Technol. 53, 1521 (2005)

    Google Scholar 

  12. R. Marques, J. Martel, F. Mesa, F. Medina, Physica 89, 35 (2002)

    Google Scholar 

  13. S. Hrabar, J. Bartolic, Z. Sipus, IEEE Antennas Propag. 53, 110 (2005)

    Article  Google Scholar 

  14. R.W. Ziolkowski, IEEE Antennas Propag. 51, 1516 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.-Y. Meng.

Additional information

PACS

78.70.Gq; 81.05.Zx; 84.40.Ba

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, FY., Wu, Q., Wu, J. et al. An ultra-small cavity resonator loaded with LHM and RHM layers. Appl. Phys. A 87, 329–333 (2007). https://doi.org/10.1007/s00339-007-3874-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3874-3

Keywords

Navigation