Skip to main content
Log in

Efficient synthesis of ZnO nanoparticles, nanowalls, and nanowires by thermal decomposition of zinc acetate at a low temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO nanoparticles, nanowires, and nanowalls were synthesized rapidly on Si via thermal decomposition of zinc acetate by a modified chemical vapor deposition at a low substrate temperature of 200–250°C for the first time. The diameters of the synthesized nanoparticles and nanowires are around 100 and 30 nm, respectively, and the thickness of nanowalls is around 20 nm. High-resolution transmission electron microscopy shows that the nanowires as well as nanowalls are single-crystalline, and the nanoparticles are highly-textured poly-crystalline structures. Room-temperature photoluminescence spectra of the nanostructures show strong ultraviolet emissions centered at 368–383 nm and weak violet emissions at around 425 nm, indicating good crystal quality. The study provides a simple and efficient route to synthesize ZnO diverse nanostructures at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  2. Z.L. Wang, J.H. Song, Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  3. R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Y.K. Tseng, S.C. Kung, Appl. Phys. Lett. 87, 013110 (2005)

    Article  ADS  Google Scholar 

  4. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)

    Article  ADS  Google Scholar 

  5. A. Du Pasquier, H.H. Chen, Y.C. Lu, Appl. Phys. Lett. 89, 253513 (2006)

    Article  ADS  Google Scholar 

  6. J.L. Yang, S.J. An, W.I. Park, G.C. Yi, W. Choi, Adv. Mater. 16, 1661 (2004)

    Article  Google Scholar 

  7. R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Appl. Phys. Lett. 86, 251104 (2005)

    Article  ADS  Google Scholar 

  8. R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Nanotechnology 17, 753 (2006)

    Article  ADS  Google Scholar 

  9. Y.R. Lin, Y.K. Tseng, S.S. Yang, S.T. Wu, C.L. Hsu, S.J. Chang, Cryst. Growth Des. 5, 579 (2005)

    Article  Google Scholar 

  10. W.L. Hughes, Z.L. Wang, J. Am. Chem. Soc. 126, 6703 (2004)

    Article  Google Scholar 

  11. C. Li, G. Fang, F. Su, G. Li, X. Wu, X. Zhao, Cryst. Growth Des. 6, 2588 (2006)

    Article  Google Scholar 

  12. P.X. Gao, Z.L. Wang, Small 1, 945 (2005)

    Article  MathSciNet  Google Scholar 

  13. J.J. Wu, S.C. Liu, Adv. Mater. 14, 215 (2002)

    Article  MathSciNet  Google Scholar 

  14. E. Galoppini, J. Rochford, H.H. Chen, G. Saraf, Y.C. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B 110, 16159 (2006)

    Article  Google Scholar 

  15. C.H. Hung, W.T. Whang, J. Cryst. Growth 268, 242 (2004)

    Article  ADS  Google Scholar 

  16. C.H. Ku, J.J. Wu, J. Phys. Chem. B 110, 12981 (2006)

    Article  Google Scholar 

  17. J.H. Huang, C.Y. Wang, C.P. Liu, W.H. Chu, Y.J. Chang, Appl. Phys. A 87, 749 (2007)

    Article  ADS  Google Scholar 

  18. M.J. Alam, D.C. Cameron, Thin Solid Films 76, 420 (2002)

    Google Scholar 

  19. S.S. Lin, J.L. Huanga, P. Sajgalik, Surf. Coat. Technol. 185, 254 (2004)

    Article  Google Scholar 

  20. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002)

    Article  Google Scholar 

  21. Y. Yang, X.F. Li, J.B. Chen, H.L. Chen, X.M. Bao, Chem. Phys. Lett. 373, 22 (2003)

    Article  ADS  Google Scholar 

  22. Y. Yang, H.L. Chen, B. Zhao, X.M. Bao, J. Cryst. Growth 263, 447 (2004)

    Article  ADS  Google Scholar 

  23. X.H. Xia, Z.Z. Ye, G.D. Yuan, L.P. Zhu, B.H. Zhao, Appl. Surf. Sci. 253, 909 (2006)

    Article  ADS  Google Scholar 

  24. J.G. Lu, Z.Z. Ye, J.Y. Huang, L.P. Zhu, B.H. Zhao, Z.L. Wang, Sz. Fujita, Appl. Phys. Lett. 88, 063110 (2006)

    Article  ADS  Google Scholar 

  25. R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Appl. Phys. Lett. 87, 053103 (2005)

    Article  ADS  Google Scholar 

  26. T.B. Hur, Y.H. Hwang, H.K. Kim, Appl. Phys. Lett. 86, 19311 (2005)

    Google Scholar 

  27. W. Gopel, U. Lampe, Phys. Rev. B 22, 6447 (1980)

    Article  ADS  Google Scholar 

  28. P. Jiang, J.J. Zhou, H.F. Fang, C.Y. Wang, Z.L. Wang, S.S. Xie, Adv. Funct. Mater. 17, 1303 (2007)

    Article  Google Scholar 

  29. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Methods Phys. Res. Sect. B 199, 286 (2003)

    Article  ADS  Google Scholar 

  30. K. Vanhausden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  31. Z. Chen, N. Wu, Z. Shan, M. Zhao, S. Li, C.B. Jiang, M.K. Chyu, S.X. Mao, Scr. Mater. 52, 63 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-Chi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, RC., Tsai, CC. Efficient synthesis of ZnO nanoparticles, nanowalls, and nanowires by thermal decomposition of zinc acetate at a low temperature. Appl. Phys. A 94, 241–245 (2009). https://doi.org/10.1007/s00339-008-4755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4755-0

PACS

Navigation