Skip to main content

Advertisement

Log in

Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT?

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate the correlation between maximum standardized uptake value (SUVmax) of 18FDG PET-CT and iodine-related attenuation (IRA) of dual energy CT (DECT) of primary tumours and 18FDG PET-CT positive thoracic lymph nodes (LN) in patients with lung cancer.

Methods

37 patients with lung cancer (27 NSCLC, 10 SCLC, 86 18FDG PET-CT positive thoracic LN) who underwent both 18FDG PET-CT and DECT were analyzed. The mean study interval between 18FDG PET-CT and DECT was ≤21 days in 17 patients. The mean and maximum IRA of DECT as well as of virtual unenhanced and virtual 120 kV images of DECT was analyzed and correlated to the SUVmax of 18FDG PET-CT in all tumours and 18FDG PET-CT positive thoracic lymph nodes. Further subgroup analysis was performed for histological subtypes in all groups.

Results

A moderate correlation was found between SUVmax and maximum IRA in all tumours (n = 37;r = 0.507;p = 0.025) whereas only weak or no correlation were found between SUVmax and all other DECT measurements. A strong correlation was found in patients with study intervals ≤21 days (n = 17; r = 0.768;p = 0.017). Analysis of histological subtypes of lung cancer showed a strong correlation between SUVmax and maximum IRA in the analysis of all patients with NSCLC (r = 0.785;p = 0.001) and in patients with NSCLC and study intervals ≤21 days (r = 0.876;p = 0.024).

Thoracic LN showed moderate correlation between SUVmax and maximum IRA in patients with study intervals ≤21 days (r = 0.654; p = 0.010) whereas a weak correlation was found between SUVmax and maximum IRA in patients with study intervals >21 days (r = 0.299; p = 0.035).

Conclusions

DECT could serve as a valuable functional imaging test for patients with NSCLC as the IRA of DECT correlates with SUVmax of 18FDG PET-CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, Scherpereel A, Mascaux C, Moreau M, Roelandts M, Alard S, Meert AP, Patz EF Jr, Lafitte JJ, Sculier JP (2008) Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 3:6–12

    Article  PubMed  Google Scholar 

  2. De Wever W, Ceyssens S, Mortelmans L, Stroobants S, Marchal G, Bogaert J, Verschakelen JA (2007) Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. Eur Radiol 17:23–32

    Article  PubMed  Google Scholar 

  3. Orlacchio A, Schillaci O, Antonelli L, D'Urso S, Sergiacomi G, Nicoli P, Simonetti G (2007) Solitary pulmonary nodules: morphological and metabolic characterisation by FDG-PET-MDCT. Radiol Med 112:157–173

    Article  PubMed  CAS  Google Scholar 

  4. Higashi K, Matsunari I, Ueda Y, Ikeda R, Guo J, Oguchi M, Tonami H, Yamamoto I (2003) Value of whole-body FDG PET in management of lung cancer. Ann Nucl Med 17:1–14

    Article  PubMed  Google Scholar 

  5. Eschmann SM, Friedel G, Paulsen F, Reimold M, Hehr T, Budach W, Scheiderbauer J, Machulla HJ, Dittmann H, Vonthein R, Bares R (2006) Is standardised (18)F-FDG uptake value an outcome predictor in patients with stage III non-small cell lung cancer? Eur J Nucl Med Mol Imaging 33:263–269

    Article  PubMed  CAS  Google Scholar 

  6. Higashi K, Ueda Y, Arisaka Y, Sakuma T, Nambu Y, Oguchi M, Seki H, Taki S, Tonami H, Yamamoto I (2002) 18 F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med 43:39–45

    PubMed  Google Scholar 

  7. Jeong HJ, Chung JK, Kim YK, Kim CY, Kim DG, Jeong JM, Lee DS, Jung HW, Lee MC (2002) Usefulness of whole-body (18)F-FDG PET in patients with suspected metastatic brain tumors. J Nucl Med 43:1432–1437

    PubMed  Google Scholar 

  8. Pandit N, Gonen M, Krug L, Larson SM (2003) Prognostic value of [18 F]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging 30:78–84

    Article  PubMed  Google Scholar 

  9. Vansteenkiste JF, Mortelmans LA (1999) FDG-PET in the locoregional lymph node staging of non-small cell lung cancer. A comprehensive review of the leuven lung cancer group experience. Clin Positron Imaging 2:223–231

    Article  PubMed  Google Scholar 

  10. Downey RJ, Akhurst T, Gonen M, Vincent A, Bains MS, Larson S, Rusch V (2004) Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol 22:3255–3260

    Article  PubMed  Google Scholar 

  11. Miles KA, Griffiths MR, Fuentes MA (2001) Standardized perfusion value: universal CT contrast enhancement scale that correlates with FDG PET in lung nodules. Radiology 220:548–553

    PubMed  CAS  Google Scholar 

  12. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, Fink C, Weckbach S, Lenhard M, Schmidt B, Flohr T, Reiser MF, Becker CR (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  13. Pansini V, Remy-Jardin M, Faivre JB, Schmidt B, Dejardin-Bothelo A, Perez T, Delannoy V, Duhamel A, Remy J (2009) Assessment of lobar perfusion in smokers according to the presence and severity of emphysema: preliminary experience with dual-energy CT angiography. Eur Radiol 19:2834–2843

    Article  PubMed  Google Scholar 

  14. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249:671–681

    Article  PubMed  Google Scholar 

  15. Shanbhogue AK, Karnad AB, Prasad SR (2010) Tumor response evaluation in oncology: current update. J Comput Assist Tomogr 34:479–484

    Article  PubMed  Google Scholar 

  16. Schaefer JF, Schneider V, Vollmar J, Wehrmann M, Aebert H, Friedel G, Vonthein R, Schick F, Claussen CD (2006) Solitary pulmonary nodules: association between signal characteristics in dynamic contrast enhanced MRI and tumor angiogenesis. Lung Cancer 53:39–49

    Article  PubMed  Google Scholar 

  17. Schaefer JF, Vollmar J, Schick F, Vonthein R, Seemann MD, Aebert H, Dierkesmann R, Friedel G, Claussen CD (2004) Solitary pulmonary nodules: dynamic contrast-enhanced MR imaging–perfusion differences in malignant and benign lesions. Radiology 232:544–553

    Article  PubMed  Google Scholar 

  18. Hellwig D, Graeter TP, Ukena D, Groeschel A, Sybrecht GW, Schaefers HJ, Kirsch CM (2007) 18 F-FDG PET for mediastinal staging of lung cancer: which SUV threshold makes sense? J Nucl Med 48:1761–1766

    Article  PubMed  Google Scholar 

  19. Miles KA, Griffiths MR, Keith CJ (2006) Blood flow-metabolic relationships are dependent on tumour size in non-small cell lung cancer: a study using quantitative contrast-enhanced computer tomography and positron emission tomography. Eur J Nucl Med Mol Imaging 33:22–28

    Article  PubMed  CAS  Google Scholar 

  20. Kieser A, Weich HA, Brandner G, Marme D, Kolch W (1994) Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 9:963–969

    PubMed  CAS  Google Scholar 

  21. Mathupala SP, Rempel A, Pedersen PL (1997) Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr 29:339–343

    Article  PubMed  CAS  Google Scholar 

  22. Yi CA, Lee KS, Kim EA, Han J, Kim H, Kwon OJ, Jeong YJ, Kim S (2004) Solitary pulmonary nodules: dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 233:191–199

    Article  PubMed  Google Scholar 

  23. Charnley N, Donaldson S, Price P (2009) Imaging angiogenesis. Methods Mol Biol 467:25–51

    Article  PubMed  CAS  Google Scholar 

  24. Swensen SJ (2000) Functional CT: lung nodule evaluation. Radiographics 20:1178–1181

    PubMed  CAS  Google Scholar 

  25. Swensen SJ, Brown LR, Colby TV, Weaver AL (1995) Pulmonary nodules: CT evaluation of enhancement with iodinated contrast material. Radiology 194:393–398

    PubMed  CAS  Google Scholar 

  26. Swensen SJ, Morin RL, Schueler BA, Brown LR, Cortese DA, Pairolero PC, Brutinel WM (1992) Solitary pulmonary nodule: CT evaluation of enhancement with iodinated contrast material–a preliminary report. Radiology 182:343–347

    PubMed  CAS  Google Scholar 

  27. Yamashita K, Matsunobe S, Tsuda T, Nemoto T, Matsumoto K, Miki H, Konishi J (1995) Solitary pulmonary nodule: preliminary study of evaluation with incremental dynamic CT. Radiology 194:399–405

    PubMed  CAS  Google Scholar 

  28. Zhang M, Kono M (1997) Solitary pulmonary nodules: evaluation of blood flow patterns with dynamic CT. Radiology 205:471–478

    PubMed  CAS  Google Scholar 

  29. Tateishi U, Kusumoto M, Nishihara H, Nagashima K, Morikawa T, Moriyama N (2002) Contrast-enhanced dynamic computed tomography for the evaluation of tumor angiogenesis in patients with lung carcinoma. Cancer 95:835–842

    Article  PubMed  Google Scholar 

  30. Aukema TS, Kappers I, Olmos RA, Codrington HE, van Tinteren H, van Pel R, Klomp HM (2010) Is 18 F-FDG PET/CT useful for the early prediction of histopathologic response to neoadjuvant erlotinib in patients with non-small cell lung cancer? J Nucl Med 51:1344–1348

    Article  PubMed  CAS  Google Scholar 

  31. Kaira K, Oriuchi N, Shimizu K, Ishikita T, Higuchi T, Imai H, Yanagitani N, Sunaga N, Hisada T, Ishizuka T, Kanai Y, Endou H, Nakajima T, Endo K, Mori M (2009) Correlation of angiogenesis with 18 F-FMT and 18 F-FDG uptake in non-small cell lung cancer. Cancer Sci 100:753–758

    Article  PubMed  CAS  Google Scholar 

  32. de Langen AJ, van den Boogaart V, Lubberink M, Backes WH, Marcus JT, van Tinteren H, Pruim J, Brans B, Leffers P, Dingemans AM, Smit EF, Groen HJ, Hoekstra OS (2010) Monitoring response to antiangiogenic therapy in non-small cell lung cancer using imaging markers derived from PET and dynamic contrast-enhanced MRI. J Nucl Med 52:48–55

    Article  PubMed  Google Scholar 

  33. Lind JS, Meijerink MR, Dingemans AM, van Kuijk C, Ollers MC, de Ruysscher D, Postmus PE, Smit EF (2010) Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non-small cell lung cancer: a new method of monitoring treatment? Eur Radiol 20:2890–2898

    Article  PubMed  Google Scholar 

  34. Ryu JS, Choi NC, Fischman AJ, Lynch TJ, Mathisen DJ (2002) FDG-PET in staging and restaging non-small cell lung cancer after neoadjuvant chemoradiotherapy: correlation with histopathology. Lung Cancer 35:179–187

    Article  PubMed  Google Scholar 

  35. De Leyn P, Lardinois D, Van Schil PE, Rami-Porta R, Passlick B, Zielinski M, Waller DA, Lerut T, Weder W (2007) ESTS guidelines for preoperative lymph node staging for non-small cell lung cancer. Eur J Cardiothorac Surg 32:1–8

    Article  PubMed  Google Scholar 

  36. Huang YE, Chen CF, Huang YJ, Konda SD, Appelbaum DE, Pu Y (2010) Interobserver variability among measurements of the maximum and mean standardized uptake values on (18)F-FDG PET/CT and measurements of tumor size on diagnostic CT in patients with pulmonary tumors. Acta Radiol 51:782–788

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

UJS is a consultant for and receives research support from Bayer-Schering, Bracco, General Electric, Medrad, and Siemens. The other authors have no conflict of interest to disclose. The study was approved by our Institutional Review Board and conducted in HIPAA compliance. Drs Henzler and Schmid-Bindert contributed equally to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Henzler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid-Bindert, G., Henzler, T., Chu, T.Q. et al. Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT?. Eur Radiol 22, 93–103 (2012). https://doi.org/10.1007/s00330-011-2230-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2230-3

Keywords

Navigation