Skip to main content
Log in

Impact of Computer-Aided CT and PET Analysis on Non-invasive T Staging in Patients with Lung Cancer and Atelectasis

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Tumor delineation within an atelectasis in lung cancer patients is not always accurate. When T staging is done by integrated 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG)-positron emission tomography (PET)/X-ray computer tomography (CT), tumors of neuroendocrine differentiation and slowly growing tumors can present with reduced FDG uptake, thus aggravating an exact T staging. In order to further exhaust information derived from [18F]FDG-PET/CT, we evaluated the impact of CT density and maximum standardized uptake value (SUVmax) for the classification of different tumor subtypes within a surrounding atelectasis, as well as possible cutoff values for the differentiation between the primary tumor and atelectatic lung tissue.

Procedures

Seventy-two patients with histologically proven lung cancer and adjacent atelectasis were investigated. Non-contrast-enhanced [18F]FDG-PET/CT was performed within 2 weeks before surgery/biopsy. Boundaries of the primary within the atelectasis were determined visually on the basis of [18F]FDG uptake; CT density was quantified manually within each primary and each atelectasis.

Results

CT density of the primary (36.4 Hounsfield units (HU) ± 6.2) was significantly higher compared to that of atelectatic lung (24.3 HU ± 8.3; p < 0.01), irrespective of the histological subtype. The discrimination between different malignant tumors using density analysis failed. SUVmax was increased in squamous cell carcinomas compared to adenocarcinomas. Irrespective of the malignant subtype, a possible cutoff value of 24 HU may help to exclude the presence of a primary in lesions below 24 HU, whereas a density above a threshold of 40 HU can help to exclude atelectatic lung.

Conclusion

Density measurements in patients with lung cancer and surrounding atelectasis may help to delineate the primary tumor, irrespective of the specific lung cancer subtype. This could improve T staging and radiation treatment planning (RTP) without additional application of a contrast agent in CT, or an additional magnetic resonance imaging (MRI), even in cases of lung tumors of neuroendocrine differentiation or in slowly growing tumors with less avidity to [18F]FDG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kratochwil C, Haberkorn U, Giesel FL (2010) PET/CT for diagnostics and therapy stratification of lung cancer. Radiologe 50:684–691

    Article  CAS  Google Scholar 

  2. Abramyuk A, Appold S, Zöphel K, Hietschold V, Baumann M, Abolmaali N (2012) Quantitative modifications of TNM staging, clinical staging and therapeutic intent by FDG-PET/CT in patients with non small cell lung cancer scheduled for radiotherapy—a retrospective study. Lung Cancer 78:148–152

    Article  Google Scholar 

  3. Flechsig P, Mehndiratta A, Haberkorn U, Kratochwil C, Giesel FL (2015) PET/MRI and PET/CT in lung lesions and thoracic malignancies. Semin Nucl Med 45:268–281

    Article  Google Scholar 

  4. Manenti G, Raguso M, D'Onofrio S et al (2013) Pancoast tumor: the role of magnetic resonance imaging. Case Rep Radiol 2013:479120

    PubMed  PubMed Central  Google Scholar 

  5. MacManus M, Everitt S, Schimek-Jasch T, Li XA, Nestle U, Kong FMS (2017) Anatomic, functional and molecular imaging in lung cancer precision radiation therapy: treatment response assessment and radiation therapy personalization. Transl Lung Cancer Res 6:670–688

    Article  CAS  Google Scholar 

  6. Kwee TC, Torigian DA, Alavi A (2013) Oncological applications of positron emission tomography for evaluation of the thorax. J Thorac Imaging 28:11–24

    Article  Google Scholar 

  7. Gondi V, Bradley K, Mehta M, Howard A, Khuntia D, Ritter M, Tomé W (2007) Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67:187–195

    Article  Google Scholar 

  8. Kruser TJ, Bradley KA, Bentzen SM, Anderson BM, Gondi V, Khuntia D, Perlman SB, Tome WA, Chappell RJ, Walker WL, Mehta MP (2009) The impact of hybrid PET-CT scan on overall oncologic management, with a focus on radiotherapy planning: a prospective, blinded study. Technol Cancer Res Treat 8:149–158

    Article  Google Scholar 

  9. Schaarschmidt BM, Grueneisen J, Metzenmacher M, Gomez B, Gauler T, Roesel C, Heusch P, Ruhlmann V, Umutlu L, Antoch G, Buchbender C (2017) Thoracic staging with (18)F-FDG PET/MR in non-small cell lung cancer—does it change therapeutic decisions in comparison to 18F-FDG PET/CT? Eur Radiol 27:681–688

    Article  Google Scholar 

  10. Lee SM, Goo JM, Park GM et al (2016) Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. Eur Radiol 26:3850–3857

    Article  Google Scholar 

  11. Heusch P, Buchbender C, Köhler J et al (2014) Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT. J Nucl Med 55:373–378

    Article  CAS  Google Scholar 

  12. Huellner MW, de Galiza BF, Husmann L et al (2016) TNM staging of non-small cell lung cancer: comparison of PET/MR and PET/CT. J Nucl Med 57:21–26

    Article  CAS  Google Scholar 

  13. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762

    Article  Google Scholar 

  14. Chen B, Zhang R, Gan Y, Yang L, Li W (2017) Development and clinical application of radiomics in lung cancer. Radiat Oncol 12:154

    Article  Google Scholar 

  15. Bashir U, Siddique MM, Mclean E, Goh V, Cook GJ (2016) Imaging heterogeneity in lung cancer: techniques, applications, and challenges. AJR Am J Roentgenol 207:534–543

    Article  Google Scholar 

  16. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, Zegers CML, Gillies R, Boellard R, Dekker A, Aerts HJWL (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    Article  Google Scholar 

  17. Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: the promise of radiomics. Phys Med 38:122–139

    Article  Google Scholar 

  18. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJWL, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248

    Article  Google Scholar 

  19. Wilson R, Devaraj A (2017) Radiomics of pulmonary nodules and lung cancer. Transl Lung Cancer Res 6:86–91

    Article  Google Scholar 

  20. Coroller TP, Agrawal V, Huynh E, Narayan V, Lee SW, Mak RH, Aerts HJWL (2017) Radiomic-based pathological response prediction from primary tumors and lymph nodes in NSCLC. J Thorac Oncol 12:467–476

    Article  Google Scholar 

  21. Jiao Y, Ren Y, Zheng X (2017) Quantitative imaging assessment of tumor response to chemoradiation in lung cancer. Zhongguo Fei Ai Za Zhi 20:407–414

    PubMed  Google Scholar 

  22. Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, Liang C, Tian J, Liang C (2016) Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology 281:947–957

    Article  Google Scholar 

  23. Jin JY, Kong FM (2016) Personalized radiation therapy (PRT) for lung cancer. Adv Exp Med Biol 890:175–202

    Article  Google Scholar 

  24. Thawani R, McLane M, Beig N, Ghose S, Prasanna P, Velcheti V, Madabhushi A (2018) Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 115:34–41

    Article  Google Scholar 

  25. Constanzo J, Wei L, Tseng HH, El Naqa I (2017) Radiomics in precision medicine for lung cancer. Transl Lung Cancer Res 6:635–647

    Article  Google Scholar 

  26. Shao T, Yu L, Li Y, Chen M (2015) Density and SUV ratios from PET/CT in the detection of mediastinal lymph node metastasis in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi 18:155–160

    PubMed  Google Scholar 

  27. Flechsig P, Kratochwil C, Schwartz LH, Rath D, Moltz J, Antoch G, Heussel CP, Rieser M, Warth A, Zabeck H, Kauczor HU, Haberkorn U, Giesel FL (2014) Quantitative volumetric CT-histogram analysis in N-staging of 18F-FDG-equivocal patients with lung cancer. J Nucl Med 55:559–564

    Article  CAS  Google Scholar 

  28. Flechsig P, Frank P, Kratochwil C, Antoch G, Rath D, Moltz J, Rieser M, Warth A, Kauczor HU, Schwartz LH, Haberkorn U, Giesel FL (2017) Radiomic analysis using density threshold for FDG-PET/CT-based N-staging in lung cancer patients. Mol Imaging Biol 19:315–322

    Article  CAS  Google Scholar 

  29. Giesel FL, Schneider F, Kratochwil C, Rath D, Moltz J, Holland-Letz T, Kauczor HU, Schwartz LH, Haberkorn U, Flechsig P (2017) Correlation between SUVmax and CT radiomic analysis using lymph node density in PET/CT-based lymph node staging. J Nucl Med 58:282–287

    Article  CAS  Google Scholar 

  30. Tournoy KG, Maddens S, Gosselin R, van Maele G, van Meerbeeck JP, Kelles A (2007) Integrated FDG-PET/CT does not make invasive staging of the intrathoracic lymph nodes in non-small cell lung cancer redundant: a prospective study. Thorax 62:696–701

    Article  CAS  Google Scholar 

  31. Cuaron J, Dunphy M, Rimner A (2012) Role of FDG-PET scans in staging, response assessment, and follow-up care for non-small cell lung cancer. Front Oncol 2:208

    PubMed  Google Scholar 

  32. Brown RS, Leung JY, Kison PV, Zasadny KR, Flint A, Wahl RL (1999) Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 40:556–565

    CAS  PubMed  Google Scholar 

  33. Giesel F, Will L, Lawal I, Lengana T, Kratochwil C, Vorster M, Neels O, Reyneke F, Haberkon U, Kopka K, Sathekge M (2017) Intra-individual comparison of 18F-PSMA-1007 and 18F-DCFPyL PET/CT in the prospective evaluation of patients with newly diagnosed prostate carcinoma: a pilot study. J Nucl Med. https://doi.org/10.2967/jnumed.117.204669

    Article  Google Scholar 

  34. Naalsund A, Maublant J (2006) The solitary pulmonary nodule--is it malignant or benign? Diagnostic performance of Tc-depreotide SPECT. Respiration 73:634–641

    Article  Google Scholar 

  35. Halley A, Hugentobler A, Icard P, Porret E, Sobrio F, Lerochais JP, Bouvard G, Zalcman G, Agostini D (2005) Efficiency of 18F-FDG and 99mTc-depreotide SPECT in the diagnosis of malignancy of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 32:1026–1032

    Article  Google Scholar 

  36. Menda Y, Kahn D (2002) Somatostatin receptor imaging of non-small cell lung cancer with 99mTc depreotide. Semin Nucl Med 32:92–96

    Article  Google Scholar 

  37. Jensen TH, Bech M, Binderup T, Böttiger A, David C, Weitkamp T, Zanette I, Reznikova E, Mohr J, Rank F, Feidenhans’l R, Kjær A, Højgaard L, Pfeiffer F (2013) Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography. PLoS One 8:e54047

    Article  CAS  Google Scholar 

  38. Flechsig P, Choyke P, Kratochwil C, Warth A, Antoch G, Holland Letz T, Rath D, Eichwald V, Huber PE, Kauczor HU, Haberkorn U, Giesel FL (2016) Increased x-ray attenuation in malignant vs. benign mediastinal nodes in an orthotopic model of lung cancer. Diagn Interv Radiol 22:35–39

    Article  Google Scholar 

  39. Strobel K, Thuerl CM, Hany TF (2005) How much intravenous contrast is needed in FDG-PET/CT? Nuklearmedizin 44(Suppl 1):S32–S37

    Article  Google Scholar 

  40. Pfannenberg AC, Aschoff P, Brechtel K, Müller M, Bares R, Paulsen F, Scheiderbauer J, Friedel G, Claussen CD, Eschmann SM (2007) Low dose non-enhanced CT versus standard dose contrast-enhanced CT in combined PET/CT protocols for staging and therapy planning in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34:36–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Flechsig.

Ethics declarations

The study was approved by the institutional review board and conducted according to the guidelines of the institutional review board and to good clinical practice according to the ethical principles that have their origin in the Declaration of Helsinki. In this retrospective analysis, the requirement of informed consent was waived by the institutional review board.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flechsig, P., Rastgoo, R., Kratochwil, C. et al. Impact of Computer-Aided CT and PET Analysis on Non-invasive T Staging in Patients with Lung Cancer and Atelectasis. Mol Imaging Biol 20, 1044–1052 (2018). https://doi.org/10.1007/s11307-018-1196-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1196-9

Key words

Navigation