Skip to main content

Advertisement

Log in

Ecological determinants of methylmercury bioaccumulation in benthic invertebrates of polar desert lakes

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

We investigated concentrations of monomethylmercury (MMHg) at the base of benthic food webs in six lakes from polar desert (biologically poor and low annual precipitation) on Cornwallis Island (Nunavut, Canada, ~75°N latitude). Anthropogenic mercury emissions reach the Arctic by long-range atmospheric transport, and information is lacking on processes controlling MMHg entry into these simple lake food webs, despite their importance in determining transfer to lake-dwelling Arctic char. We examined the influences of diet (using carbon and nitrogen stable isotopes), water depth, and taxonomic composition on MMHg bioaccumulation in benthic invertebrates (Chironomidae and Trichoptera). We also estimated MMHg biomagnification between benthic algae and invertebrates. Similar MMHg concentrations of chironomid larvae in nearshore and offshore zones suggest that benthic MMHg exposure was homogeneous within the lakes. Chironomid δ13C values were also similar in both depth zones, suggesting that diet items with highly negative δ13C, specifically methanogenic bacteria and planktonic organic matter, were not important food (and therefore mercury) sources for profundal larvae. MMHg concentrations were significantly different among two subfamilies of chironomids (Diamesinae, Chironominae) and Trichoptera. Higher MMHg concentrations in Diamesinae were likely related to predation on other chironomids. We found high MMHg biomagnification between benthic algae and chironomid larvae compared with literature estimates for aquatic ecosystems at lower latitudes; thus, benthic processes may affect the sensitivity of polar desert lakes to mercury. Information on benthic MMHg exposure is important for evaluating and tracking impacts of atmospheric mercury deposition and environmental change in this remote High Arctic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment. Cambridge University Press, New York. ISBN-13 978-0-521- 86509

  • AMAP (2011) AMAP assessment 2011: Mercury in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp xiv + 193

  • Amyot M, Lean D, Mierle G (1997) Photochemical formation of volatile mercury in high Arctic lakes. Environ Toxicol Chem 16(10):2054–2063

    Article  CAS  Google Scholar 

  • Antoniades D, Michelutti N, Quinlan R, Blais JM, Bonilla S, Douglas MSV, Pienitz R, Smol JP, Vincenta WF (2011) Cultural eutrophication, anoxia, and ecosystem recovery in Meretta Lake, High Arctic Canada. Limnol Oceanogr 56(2):639–650

    Article  CAS  Google Scholar 

  • Bunn SE, Leigh C, Jardine TD (2013) Diet-tissue fractionation of δ15N by consumers from streams and rivers. Limnol Oceanogr 58(3):765–773

    Article  CAS  Google Scholar 

  • Cai Y, Tang G, Jaffé R, Jones R (1997) Evaluation of some isolation methods for organomercury determination in soil and fish samples by capillary gas chromatography—atomic fluorescence spectrometry. Int J Environ Anal Chem 68(3):331–345

    Article  CAS  Google Scholar 

  • Callaghan TV, Björn LO, Chapin FS, Chernov Y, Christensen TR, Huntley B, Ims R, Johansson M, Riedlinger DJ, Jonasson S, Matveyeva N, Oechel W, Panikov N, Shaver G (2005) Arctic tundra and polar desert ecosystems. ACIA. Arctic climate impact assessment. Cambridge University Press, New York, pp 243–352

    Google Scholar 

  • Chételat J, Amyot M, Cloutier L, Poulain A (2008) Metamorphosis in chironomids, more than mercury supply, controls methylmercury transfer to fish in High Arctic lakes. Environ Sci Technol 42(24):9110–9115. doi:10.1021/es801619h

    Article  PubMed  Google Scholar 

  • Chételat J, Cloutier L, Amyot M (2010) Carbon sources for lake food webs in the Canadian High Arctic and other regions of Arctic North America. Polar Biol 33(8):1111–1123

    Article  Google Scholar 

  • Chételat J, Amyot M, Cloutier L (2012) Shifts in elemental composition, methylmercury content and δ15N ratio during growth of a High Arctic copepod. Freshw Biol 57(6):1228–1240

    Article  Google Scholar 

  • Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, Scheuhammer T, Andersen M, Andreasen C, Andriashek D, Asmund G, Aubail A, Baagøe H, Born EW, Chan HM, Derocher AE, Grandjean P, Knott K, Kirkegaard M, Krey A, Lunn N, Messier F, Obbard M, Olsen MT, Ostertag S, Peacock E, Renzoni A, Rigét FF, Skaare JU, Stern G, Stirling I, Taylor M, Wiig T, Wilson S, Aars J (2013) What are the toxicological effects of mercury in Arctic biota? Sci Total Environ 443:775–790

    Article  CAS  PubMed  Google Scholar 

  • Doi H, Kikuchi E, Takagi S, Shikano S (2006) Selective assimilation by deposit feeders: experimental evidence using stable isotope ratios. Basic Appl Ecol 7(2):159–166

    Article  Google Scholar 

  • Donaldson SG, Van Oostdam J, Tikhonov C, Feeley M, Armstrong B, Ayotte P, Boucher O, Bowers W, Chan L, Dallaire F, Dallaire R, Dewailly E, Edwards J, Egeland GM, Fontaine J, Furgal C, Leech T, Loring E, Muckle G, Nancarrow T, Pereg D, Plusquellec P, Potyrala M, Receveur O, Shearer RG (2010) Environmental contaminants and human health in the Canadian Arctic. Sci Total Environ 408(22):5165–5234

    Article  CAS  PubMed  Google Scholar 

  • Fry B (2006) Stable Isotope Ecology. Springer, New York

    Book  Google Scholar 

  • Furgal C, Prowse T (2009) Climate impacts on Northern Canada: introduction. Ambio 38(5):246–247

    Article  PubMed  Google Scholar 

  • Gallagher CP, Dick TA (2010) Trophic structure of a landlocked Arctic char Salvelinus alpinus population from southern Baffin Island, Canada. Ecol Freshw Fish 19(1):39–50

  • Gantner N, Muir DC, Power M, Iqaluk D, Reist JD, Babaluk JA, Meili M, Borg H, Hammar J, Michaud W, Dempson B, Solomon KR (2010a) Mercury concentrations in landlocked Arctic char (Salvelinus alpinus) from the Canadian Arctic. Part II: influence of lake biotic and abiotic characteristics on geographic trends in 27 populations. Environ Toxicol Chem 29(3):633–643. doi:10.1002/etc.96

    Article  CAS  PubMed  Google Scholar 

  • Gantner N, Power M, Iqaluk D, Meili M, Borg H, Sundbom M, Solomon KR, Lawson G, Muir DC (2010b) Mercury concentrations in landlocked Arctic char (Salvelinus alpinus) from the Canadian Arctic. Part I: insights from trophic relationships in 18 lakes. Environ Toxicol Chem 29(3):621–632. doi:10.1002/etc.95

    Article  CAS  PubMed  Google Scholar 

  • Goedkoop W, Åkerblom N, Demandt MH (2006) Trophic fractionation of carbon and nitrogen stable isotopes in Chironomus riparius reared on food of aquatic and terrestrial origin. Freshw Biol 51(5):878–886

    Article  CAS  Google Scholar 

  • Grey J, Kelly A, Jones RI (2004) High intraspecific variability in carbon and nitrogen stable isotope ratios of lake chironomid larvae. Limnol Oceanogr 49(1):239–244

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF, Lamborg CH, Balcom PH, Tseng CM (2006) Biogeochemical cycling of methylmercury in lakes and tundra watersheds of Arctic Alaska. Environ Sci Technol 40(4):1204–1211

    Article  CAS  PubMed  Google Scholar 

  • Hershey AE, Beaty S, Fortino K, Kelly S, Keyse M, Luecke C, O’Brien WJ, Whalen SC (2006) Stable isotope signatures of benthic invertebrates in arctic lakes indicate limited coupling to pelagic production. Limnol Oceanogr 51(1):177–188

    Article  Google Scholar 

  • Hintelmann H, Keppel-Jones K, Evans RD (2000) Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environ Toxicol Chem 19(9):2204–2211

    Article  CAS  Google Scholar 

  • Hobson KA, Welch HE (1995) Cannibalism and trophic structure in a high Arctic lake: insights from stable-isotope analysis. Can J Fish Aquat Sci 52(6):1195–1201

    Article  Google Scholar 

  • Ings NL, Hildrew AG, Grey J (2010) Gardening by the psychomyiid caddisfly Tinodes waeneri: evidence from stable isotopes. Oecologia 163(1):127–139

    Article  PubMed  Google Scholar 

  • Jones RI, Carter CE, Kelly A, Ward S, Kelly DJ, Grey J (2008) Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 89(3):857–864

    Article  PubMed  Google Scholar 

  • Jorgenson JK, Welch HE, Curtis MF (1992) Response of Amphipoda and Trichoptera to lake fertilization in the Canadian Arctic. Can J Fish Aquat Sci 49(11):2354–2362

    Article  Google Scholar 

  • Karimi R, Chen CY, Pickhardt PC, Fisher NS, Folt CL (2007) Stoichiometric controls of mercury dilution by growth. Proc Natl Acad Sci USA 104(18):7477–7482. doi:10.1073/pnas.0611261104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47(23):13385–13394. doi:10.1021/es403103t

    Article  CAS  PubMed  Google Scholar 

  • Lehnherr I, St. Louis VL, Kirk JL (2012) Methylmercury cycling in high arctic wetland ponds: controls on sedimentary production. Environ Sci Technol 46(19):10523–10531

    Article  CAS  PubMed  Google Scholar 

  • Loseto LL, Lean DRS, Siciliano SD (2004) Snowmelt sources of methylmercury to high arctic ecosystems. Environ Sci Technol 38(11):3004–3010. doi:10.1021/es035146n

    Article  CAS  PubMed  Google Scholar 

  • Markager S, Vincent WF, Tang EPY (1999) Carbon fixation by phytoplankton in high Arctic lakes: implications of low temperature for photosynthesis. Limnol Oceanogr 44(3):597–607

    Article  CAS  Google Scholar 

  • Michelutti N, Douglas MSV, Smol JP (2003) Diatom response to recent climatic change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut). Glob Planet Change 38:257–271

    Article  Google Scholar 

  • Muir D, Wang X, Bright D, Lockhart L, Köck G (2005) Spatial and temporal trends of mercury and other metals in landlocked char from lakes in the Canadian Arctic archipelago. Sci Total Environ 351–352:464–478

    Article  PubMed  Google Scholar 

  • NCP (2012) Canadian Arctic contaminants assessment report III: Mercury in Canada’s North. Northern Contaminants Program (NCP), Aboriginal Affairs and Northern Development Canada, Ottawa, pp xxiii + 276

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3):703–718

    Article  Google Scholar 

  • Premke K, Karlsson J, Steger K, Gudasz C, von Wachenfeldt E, Tranvik LJ (2010) Stable isotope analysis of benthic fauna and their food sources in boreal lakes. J N Am Benthol Soc 29(4):1339–1348

    Article  Google Scholar 

  • Prowse TD, Wrona FJ, Reist JD, Gibson JJ, Hobbie JE, Lévesque LMJ, Vincent WF (2006) Climate change effects on hydroecology of arctic freshwater ecosystems. Ambio 35(7):347–358

    Article  CAS  PubMed  Google Scholar 

  • Reuss NS, Hamerlík L, Velle G, Michelsen A, Pedersen O, Brodersen KP (2013) Stable isotopes reveal that chironomids occupy several trophic levels within West Greenland lakes: implications for food web studies. Limnol Oceanogr 58(3):1023–1034

    Article  CAS  Google Scholar 

  • Schindler DW, Welch HE, Kalff J, Brunskill GJ, Kritsch N (1974) Physical and chemical limnology of Char Lake, Cornwallis Island (75 N Lat.). J Fish Res Board Can 31:585–607

    Article  CAS  Google Scholar 

  • Stern GA, Macdonald RW, Outridge PM, Wilson S, Chételat J, Cole A, Hintelmann H, Loseto LL, Steffen A, Wang F, Zdanowicz C (2012) How does climate change influence arctic mercury? Sci Total Environ 414:22–42

    Article  CAS  PubMed  Google Scholar 

  • Stoeva MK, Aris-Brosou S, Pelletier P, Amyot M, Hintelmann H, Chételat J, Poulain A (2013) Microbial community structure in lake and wetland sediments from a high Arctic polar desert revealed by targeted transcriptomics. PLoS One 9(3):e89531. doi:10.1371/journal.pone.0089531

    Article  Google Scholar 

  • Syväranta J, Hämäläinen H, Jones RI (2006) Within-lake variability in carbon and nitrogen stable isotope signatures. Freshw Biol 51(6):1090–1102

    Article  Google Scholar 

  • Tian W, Egeland GM, Sobol I, Chan HM (2011) Mercury hair concentrations and dietary exposure among Inuit preschool children in Nunavut, Canada. Environ Int 37(1):42–48

    Article  CAS  PubMed  Google Scholar 

  • Tsui MTK, Wang WX (2004) Uptake and elimination routes of inorganic mercury and methylmercury in Daphnia magna. Environ Sci Technol 38(3):808–816

    Article  CAS  PubMed  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80(4):1395–1404

    Article  Google Scholar 

  • Vincent WF, MacIntyre S, Spigel RH, Laurion I (2008) The physical limnology of high latitude lakes. In: Vincent WF, Laybourn-Parry J (eds) Polar Lakes and Rivers—limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, UK, pp 65–81

    Google Scholar 

  • Welch HE (1976) Ecology of Chironomidae (Diptera) in a polar lake. J Fish Res Board Can 33:227–247

    Article  Google Scholar 

  • Welch HE, Kalff J (1974) Benthic photosynthesis and respiration in Char Lake. J Fish Res Board Can 31:609–620

    Article  Google Scholar 

  • Wrona FJ, Prowse TD, Reist JD, Hobbie JE, Lévesque LMJ, Vincent WF (2006) Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35(7):359–369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Northern Contaminants Program (Aboriginal Affairs and Northern Development Canada). We thank the Polar Continental Shelf Project for logistical and helicopter support to conduct the field program at Resolute Bay. The Resolute Bay Hunters and Trappers Association kindly provided permission to sample local lakes. Assistance in the field from Catherine Girard, Brian Dimock and Pilipoosie Iqaluk was greatly appreciated. We thank three anonymous reviewers for helpful comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Chételat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chételat, J., Poulain, A.J., Amyot, M. et al. Ecological determinants of methylmercury bioaccumulation in benthic invertebrates of polar desert lakes. Polar Biol 37, 1785–1796 (2014). https://doi.org/10.1007/s00300-014-1561-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1561-3

Keywords

Navigation