Skip to main content
Log in

Chemosensory and thermal cue responses in the sub-Antarctic moth Pringleophaga marioni: Do caterpillars choose Wandering Albatross nest proxies?

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

On the South Indian Ocean Province Islands of the sub-Antarctic, most nutrients are processed through a detritus-based food web. On Marion Island, larvae of the moth Pringleophaga marioni are one of the key decomposers. Abundance of these caterpillars is higher in newly abandoned Wandering Albatross (Diomedea exulans) nests than other habitats, and this observation has been explained by hypotheses regarding the thermal and nutrient advantages of nests. These hypotheses require a mechanism for increasing the abundance of caterpillars, since nests are an ephemeral resource, and here, we determine whether caterpillars respond to chemosensory and thermal cues using a laboratory choice chamber approach. Caterpillars show no significant preference for newly abandoned nest material over no other choice, old nest material, and the common mire moss Sanionia uncinata. Caterpillars that are acclimated to warm (15 °C) conditions do prefer lower (5 °C) to higher (15 °C) temperatures, perhaps reflecting negative effects of prolonged exposure to warm temperatures on growth. Caterpillars also show significant avoidance of conspecifics, possibly because of incidental cannibalism previously reported in this species. Thus, we find no empirical support for nest-finding ability in caterpillars based on chemosensory or thermal cues. It is possible that adult females or very early instar caterpillars show such ability, or high caterpillar density and biomass in nests are an incidental consequence of better conditions in the nests or deposition by the birds during nest construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso C (1997) Choosing a place to grow. Importance of within-plant abiotic microenvironment for Yponomeuta mahalebella. Entomol Exp Appl 83:171–180

    Article  Google Scholar 

  • Bruce TJA, Lester JW, Woodstock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:1360–1385

    Article  Google Scholar 

  • Burger AE (1978) Terrestrial invertebrates: a food resource for birds at Marion Island. S Afr J Antarct Res 8:87–99

    Google Scholar 

  • Chown SL, Convey P (2007) Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Phil Trans R Soc B 362:2307–2331

    Article  PubMed Central  PubMed  Google Scholar 

  • Chown SL, Terblanche JS (2007) Physiological diversity in insects: ecological and evolutionary contexts. Adv Insect Physiol 33:50–152

    Article  Google Scholar 

  • Chown SL, McGeoch MA, Marshall DJ (2002) Diversity and conservation of invertebrates on the sub-Antarctic Prince Edward Islands. Afr Entomol 10:67–82

    Google Scholar 

  • Chown SL, Slabber S, McGeoch MA, Janion C, Leinaas HP (2007) Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc R Soc B 274:2661–2667

    Article  Google Scholar 

  • Clissold FJ, Coggan N, Simpson SJ (2013) Insect herbivores can choose microclimates to achieve nutritional homeostasis. J Exp Biol 216:2089–2096

    Article  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences, 2nd edn. Lawrence Erlbaum, New York

    Google Scholar 

  • Cohen JE, Jonsson T, Carpenter SR (2003) Ecological community description using the food web, species abundance, and body size. Proc Natl Acad Sci USA 100:1781–1786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colasurdo N, Despland E (2005) Social cues and following behaviour in the forest tent caterpillar. J Insect Behav 18:77–87

    Article  Google Scholar 

  • Crafford JE (1990) Patterns of energy flow in populations of the dominant insect consumers on Marion Island. Dissertation, University of Pretoria, South Africa

  • Crafford JE, Scholtz CH, Chown SL (1986) The insects of sub-Antarctic Marion and Prince Edward Islands, with a bibliography of entomology of the Kerguelen biogeographical province. S Afr J Antarct Res 16:42–84

    Google Scholar 

  • Deere JA, Sinclair BJ, Marshall DJ, Chown SL (2006) Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island. J Insect Physiol 52:693–700

    Article  CAS  PubMed  Google Scholar 

  • Dillon ME, Liu R, Wang G, Huey R (2012) Disentangling thermal preference and the thermal dependence of movement in ectotherms. J Thermal Biol 37:631–639

    Article  Google Scholar 

  • Fox LR (1975) Cannibalism in natural populations. Annu Rev Ecol Syst 6:87–106

    Article  Google Scholar 

  • French DD, Smith VR (1983) A note on the feeding of Pringleophaga marioni Viette larvae at Marion Island. S Afr J Antarct Res 13:45–46

    Google Scholar 

  • Gabriel AGA, Chown SL, Barendse J, Marshall DJ, Mercer RD, Pugh PJA, Smith VR (2001) Biological invasions on Southern Ocean islands: the Collembola of Marion Island as a test of generalities. Ecography 24:421–430

    Article  Google Scholar 

  • Gremmen NJM (1981) The vegetation of the subantarctic Islands Marion and Prince Edward. W Junk, The Hague

    Google Scholar 

  • Hamilton CE, Beresford DV, Sutcliffe JF (2011) Effects of natal habitat odour, reinforced by adult experience, on choice of oviposition site in the mosquito Aedes aegypti. Med Vet Entomol 25:428–435

    Article  CAS  PubMed  Google Scholar 

  • Haupt TM, Crafford JE, Chown SL (2013) Solving the puzzle of Pringleophaga—threatened, keystone detritivores in the sub-Antarctic. Insect Conserv Divers. doi:10.1111/icad.12054

    Google Scholar 

  • Hogg ID, Cary SC, Convey P, Newsham KK, O’Donnell AG, Adams BJ, Aislabie J, Frati F, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040

    Article  CAS  Google Scholar 

  • Huk T, Kühne B (1999) Substrate selection by Carabus clatratus (Coleoptera, Carabidae) and its consequences for offspring development. Oecologia 121:348–354

    Article  Google Scholar 

  • Joly Y, Frenot Y, Vernon P (1987) Environmental modifications of a sub-Antarctic peat-bog by the Wandering Albatross (Diomedea exulans): a preliminary study. Polar Biol 8:61–72

    Article  Google Scholar 

  • Klok CJ, Chown SL (1997) Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: tineidae). J Insect Physiol 43:685–694

    Article  CAS  Google Scholar 

  • Klok CJ, Chown SL (1999) Assessing the benefits of aggregation: thermal biology and water relations of anomalous emperor moth caterpillars. Funct Ecol 13:417–427

    Article  Google Scholar 

  • Lazzari CR, Núñez JA (1989) The response to radiant heat and the estimation of the temperature of distant sources in Triatoma infestans. J Insect Physiol 35:525–529

    Article  Google Scholar 

  • Le Roux PC, McGeoch MA (2008) Changes in climatic extremes, variability and signature on sub-Antarctic Marion Island. Clim Change 86:309–329

    Article  Google Scholar 

  • Le Roux V, Chapuis JL, Frenot Y, Vernon P (2002) Diet of the house mouse (Mus musculus) on Guillou Island, Kergeulen archipelago, Subantarctic. Polar Biol 25:49–57

    Article  Google Scholar 

  • Lebouvier M, Laparie M, Hullé M, Marais A, Cozie Y, Lalouette L, Vernon P, Candresse T, Frenot Y, Renault D (2011) The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol Invasions 13:1195–1208

    Article  Google Scholar 

  • McClure M, Cannell E, Despland E (2011) Thermal ecology and behaviour of the nomadic social forager Malacosoma disstria. Physiol Entomol 36:120–127

    Article  Google Scholar 

  • Pierce NE (1995) Predatory and parasitic Lepidoptera: carnivores living on plants. J Lepidop Soc 49:412–453

    Google Scholar 

  • Raffa KF, Havill NP, Nordheim EV (2002) How many choices can your test animal compare effectively? Evaluating a critical assumption of behavioural preference tests. Oecologia 133:422–429

    Article  Google Scholar 

  • Richardson ML, Mitchell RF, Reagel PF, Hanks LM (2010) Causes and consequences of cannibalism in noncarnivorous insects. Annu Rev Entomol 55:39–53

    Article  CAS  PubMed  Google Scholar 

  • Ronnås C, Larsson S, Pitacco A, Battisti A (2011) Effects of colony size on larval performance in a processionary moth. Ecol Entomol 35:436–445

    Google Scholar 

  • Ryan PG, Bester MN (2008) Pelagic predators. In: Chown SL, Froneman PW (eds) The Prince Edward Islands: land–sea interactions in a changing ecosystem. Sun Press, Stellenbosch, pp 121–164

    Google Scholar 

  • Sim SB, Mattsson M, Feder JL, Cha DH, Yee WL, Goughnour RB, Linn CE Jr, Feder JL (2012) A field test for host fruit odour discrimination and avoidance behavior for Rhagoletis pomonella flies in the western United States. J Evol Biol 25:961–971

    Article  CAS  PubMed  Google Scholar 

  • Sinclair BJ, Chown SL (2003) Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae). J Insect Physiol 49:45–52

    Article  CAS  PubMed  Google Scholar 

  • Sinclair BJ, Chown SL (2005) Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar. J Exp Biol 208:869–879

    Article  PubMed  Google Scholar 

  • Sinclair BJ, Chown SL (2006) Caterpillars benefit from thermal ecosystem engineering by wandering albatrosses on sub-Antarctic Marion Island. Biol Lett 2:51–54

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith VR (1978) Animal–plant–soil nutrient relationships on Marion Island (sub-Antarctic). Oecologia 32:239–253

    Article  Google Scholar 

  • Smith VR (2008) Energy flow and nutrient cycling in the Marion Island terrestrial ecosystems: 30 years on. Polar Record 44:211–226

    Article  Google Scholar 

  • Smith VR, Steenkamp M (1992) Soil macrofauna and nitrogen on a sub-Antarctic island. Oecologia 92:201–206

    Article  CAS  Google Scholar 

  • Smith VR, Avenant NL, Chown SL (2002) The diet and impact of house mice on a sub-Antarctic island. Polar Biol 25:703–715

    Google Scholar 

  • Sokal RR, Rohlf FJ (2001) Biometry: the principles and practice of statistics in biological research, 7th edn. WH Freeman, New York

    Google Scholar 

  • Soler R, Pineda A, Li Y, Ponzio C, van Loon JJA, Weldegergis BT, Dicke M (2012) Neonates know better than their mothers when selecting a host plant. Oikos 121:1923–1934

    Article  Google Scholar 

  • Stefanescu C, Peñuelas J, Sardans J, Filella I (2006) Females of the specialist butterfly Euphydryas aurinia (Lepidoptera: Nymphalinae: Melitaeini) select the greenest leaves of Lonicera implexa (Caprifoliaceae) for oviposition. Eur J Entomol 103:569–574

    Article  Google Scholar 

  • Stenberg JA, Ericson L (2007) Visual cues override olfactory cues in the host-finding process of the monophagous leaf beetle Altica engstroemi. Entomol Exp Appl 125:81–88

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN: 3-900051-07-0. http://www.R-project.org. Accessed 3 Apr 2013

  • Terauds A, Chown SL, Bergstrom DM (2011) Spatial scale and species identity influence the indigenous-alien diversity relationship in springtails. Ecology 92:1436–1447

    Article  PubMed  Google Scholar 

  • Thompson JN, Pellmyr O (1991) Evolution of oviposition and host preference in Lepidoptera. Annu Rev Entomol 36:65–89

    Article  Google Scholar 

  • Tréhen P, Bouché MB, Vernon PH, Frenot Y (1985) Organization and dynamics of the oligochaeta and diptera populations on Possession Island. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 606–613

    Chapter  Google Scholar 

  • Wertheim B, van Baalen EJ, Dicke M, Vet LE (2005) Pheromone-mediated aggregation in non-social arthropods: an evolutionary ecological perspective. Annu Rev Entomol 50:321–346

    Article  CAS  PubMed  Google Scholar 

  • Worland MR, Janion C, Treasure AM, Chown SL (2010) Pre-freeze mortality in three species of aphids from sub-Antarctic Marion Island. J Thermal Biol 35:255–262

    Article  Google Scholar 

  • Zalucki MP, Clarke AR, Malcolm SB (2002) Ecology and behaviour of first instar larval Lepidoptera. Annu Rev Entomol 47:361–393

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jeremy McNeil for discussions of choice chamber design, Jessica Allen for the technical drawing, and Asanda Phiri, Rina Groenewald, Charlene Janion, Justine Shaw and several members of the Marion Island relief expeditions for assistance with field work, and three anonymous reviewers for their helpful comments. This research was supported by South African National Research Foundation Grant SNA2011110700005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya M. Haupt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haupt, T.M., Sinclair, B.J. & Chown, S.L. Chemosensory and thermal cue responses in the sub-Antarctic moth Pringleophaga marioni: Do caterpillars choose Wandering Albatross nest proxies?. Polar Biol 37, 555–563 (2014). https://doi.org/10.1007/s00300-014-1457-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1457-2

Keywords

Navigation