Skip to main content
Log in

Swelling behaviour and paracetamol release from poly(N-isopropylacrylamide-itaconic acid) hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Copolymer hydrogels of N-isopropylacrylamide and itaconic acid (IA), crosslinked with N,N′-methylenebisacrylamide, were prepared by radical copolymerization. These hydrogels were investigated with regard to their composition to find materials with satisfactory swelling and drug release properties. A paracetamol is used as a model drug to investigate drug release profile of the hydrogels. It was found that the investigated hydrogels exhibited pH- and temperature-dependent swelling behaviour with restricted swelling and lower equilibrium degree of swelling at lower pH values and temperatures above the LCST value of PNIPAM (around 34 °C). The diffusion exponent for paracetamol release indicate that the mechanism of paracetamol release are governed by Fickian diffusion, while in all release media initial diffusion coefficient was lower than late time diffusion coefficient. Furthermore, the paracetamol release rate depends on the hydrogel degree of swelling and it increased in the first stage of diffusion process, whereas was no significant difference thereafter. The presence of the IA moieties incorporated into the network weakened the shear resistance of the hydrogels. In order to calculate the pore size the characteristic ratio for PNIPAM, C n  = 11.7, was calculated. Based on the pore size, the investigated hydrogels can be regarded as microporous. According to the obtained results swelling behaviour, mechanical properties, drug-loading capacity and the drug release rate could be controlled by hydrogel composition and crosslinking density, which is important for application of the investigated hydrogels as drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  CAS  Google Scholar 

  2. Qui Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  Google Scholar 

  3. Isik B (2004) Swelling behaviour and determination of diffusion characteristics of acrylamide-acrylic acid hydrogels. App Polym Sci 91:1289–1293

    Article  CAS  Google Scholar 

  4. Bajpai SK (2001) Swelling-deswelling behaviour of poly(acrylamide-co-maleic acid) hydrogels. J Appl Polym Sci 80:2782–2789

    Article  CAS  Google Scholar 

  5. Katime I, Novoa R, Diaz de Apodaca E, Mendizabal E, Puig J (1999) Theophylline release from poly(acrylamide-co-acrylic acid) hydrogels. Polym Test 18:559–566

    Article  CAS  Google Scholar 

  6. Saraydin D, Karadağ E, Caldiran Y, Güven O (2001) Nicotine-selective radiation-induced poly(acrylamide/maleic acid) hydrogels. Radiat Phys Chem 60:203–210

    Article  CAS  Google Scholar 

  7. Şen M, Uzun C, Güven O (2000) Controlled release of terbinafine hydrochloride from pH sensitive poly(acrylamide/maleic acid) hydrogels. Int J Pharm 203:149–157

    Article  Google Scholar 

  8. Kayaman N, Hamurcu EEG, Uyanik N, Baysal BM (1999) Interpenetrating hydrogel networks based on polyacrylamide and poly(itaconic acid): synthesis and characterization. Macromol Chem Phys 200:231–238

    Article  CAS  Google Scholar 

  9. Huglin MB, Liu Y, Velada JL (1997) Thermoreversible swelling behaviour of hydrogel based on N-isopropylacrylamide and acrylic acid). Polymer 38(23):5785–5791

    Article  CAS  Google Scholar 

  10. Yildiz B, Işik B, Kiş M (2002) Synthesis and characterization of thermoresponsive N-isopropylacrylamide-acrylamide hydrogels. Eur Polym J 38(7):1343–1347

    Article  CAS  Google Scholar 

  11. Zhang J, Chu L-Y, Li Y-K, Lee YM (2007) Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviour. Polymer 48(6):1718–1728

    Article  CAS  Google Scholar 

  12. He C, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive block copolymers hydrogels for drug delivery. J Control Rel 127(3):189–207

    Article  CAS  Google Scholar 

  13. Kaşgöz H (2005) Aminofunctionalized acrylamide-maleic acid hydrogels: adsorption of indigo carmine. Colloid Surf A Physicochem Eng Asp 266(1–3):44–50

    Google Scholar 

  14. Kalagasidis Krušić M, Danković D, Nikolić M (2004) Poly(acrylamide-co-itaconic acid) and Semi-IPNS with poly(ethylene glycol): preparation and characterization. Macromol Chem Phys 205:2214–2220

    Article  Google Scholar 

  15. Karadağ E, Saraydin D, Güven O (2001) Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers. Macromol Mater Eng 286:34–42

    Article  Google Scholar 

  16. Karadağ E, Saraydin D, Cetinkaya S, Güven O (1996) In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide-based hydrogels. Biomaterials 17:67–70

    Article  Google Scholar 

  17. Blanco MD, Garcia O, Trigo RM, Teijón JM, Katime I (1996) 5-fluorouracil release from copolymeric hydrogels of itaconic acid monoester. Biomaterials 17:1061–1067

    Article  CAS  Google Scholar 

  18. Blanco MD, Bernardo MV, Teijón C, Sastre RL, Teijón JM (2003) Transdermal application of bupivacaine-loaded poly(acrylamide-co-monomethylitaconate) hydrogels. Int J Pharm 255:99–107

    Article  CAS  Google Scholar 

  19. Kirimura K, Sato T, Nakanishi N, Terada M, Usami S (1997) Breeding of starch-utilizing and itaconic-acid-producing koji molds by interspecific protoplast fusion between Aspergillus terreus and Aspergillus usamii. Appl Microbiol Biotechnol 47:127–131

    Article  CAS  Google Scholar 

  20. Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Microbiol Biotechnol 56:289–295

    Article  CAS  Google Scholar 

  21. Stanojević M, Kalagasidis Krušić M, Filipović J, Parojčić J, Stupar M (2006) An investigation into the influence of hydrogel composition on swelling behaviour and drug release from poly(acrylamide-co-itaconic acid) hydrogels in various media. Drug Deliv 13:1–7

    Article  Google Scholar 

  22. Djonlagić J, Petrović Z (2004) Semi-interpenetrating polymer networks composed of poly(N-isopropylacrylamide) and polyacrylamide hydrogels. J Polym Sci Part B Polym Phys 42:3987–3999

    Article  Google Scholar 

  23. Kalagasidis Krušić M, Filipović J (2006) Copolymer hydrogel based on N-isopropyalacrylamide and itaconic acid. Polymer 47:148–155

    Article  Google Scholar 

  24. Horter D, Dressman JB (2001) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 46(1–3):75–87

    Article  CAS  Google Scholar 

  25. Amidon LG, Lobenberg R (2000) Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm 50:3–12

    Article  Google Scholar 

  26. Jones M (1999) Effect of pH on the lower critical solution temperatures of random copolymers of N-isopropylacrylamide and acrylic acid. Eur Polym J 35:795–801

    Article  CAS  Google Scholar 

  27. Weast RC (1975) Handbook of chemistry and physics, 55th edn. Cleveland, Ohio, p 129

    Google Scholar 

  28. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  Google Scholar 

  29. Kalagasidis Krušić M, Džunuzović E, Trifunović S, Filipović J (2004) Polyacrylamide and poly(itaconic acid) complexes. Eur Polym J 40:793–798

    Article  Google Scholar 

  30. Peppas NA, Merill EW (1977) Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci 21:1763–1770

    Article  CAS  Google Scholar 

  31. Tasdelen B, Kayaman-Apohan N, Guven O, Baysal BM (2004) Preparation of Poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels and their drug release behaviour. Int J Pharm 278:343–351

    Article  CAS  Google Scholar 

  32. Şen M, Yakar A, Güven O (1999) Determination of average molecular weight between crosslinks (Mc) from swelling behaviours. Polymer 40:2969–2974

    Article  Google Scholar 

  33. Şen M, Güven O (1998) Prediction of swelling behaviours of diprotic acid containinig hydrogels. Polymer 39:1165–1172

    Article  Google Scholar 

  34. Veličković J, Filipović J, Petrović-Djakov D (1994) The synthesis and characterization of poly(itaconic acid). Polym Bull 32:169–172

    Article  Google Scholar 

  35. Veličković J, Filipović J (1984) Dilute solution properties and unperturbed dimensions of poly(di-n-alkyl itaconate)s. Macromol Chem 185:569–578

    Article  Google Scholar 

  36. Chiantore O, Guaita M, Trossarelli L (1979) Solution properties of Poly(N-methyl acrylamide). Macromol Chem 180:2019–2021

    Article  CAS  Google Scholar 

  37. Martin A, Swarbrick J, Cammarata A (1993) Physical chemical principles in pharmaceutical science. In: Physical pharmacy, 4th sub edn. Lippincott Williams & Wilkins, Philadelphia, pp 335–401

  38. Iqbal MJ, Malik QM (2005) Partial molar volume of paracetamol in water, 0.1 M HCl and 0.154 M NaCl at T = (298.15, 303.15, 308.15 and 310.65)K and at 101.325 kPa. J Chem Thermodyn 37(12):1347–1350

    Article  CAS  Google Scholar 

  39. Gutowska A, Bark JS, Kwon IC, Bae YH, Cha Y, Kim SW (1997) Squeezing hydrogels for controlled oral drug delivery. J Control Rel 48:141–148

    Article  CAS  Google Scholar 

  40. Quintana JR, Valderruten NE, Katime I (2002) Mechanical properties of poly(N-isopropylacrylamide-co-itaconic acid) hydrogels. J Appl Polym Sci 85:2540–2545

    Article  CAS  Google Scholar 

  41. Brazel CS, Peppas NA (1996) Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. J Control Rel 39:57–64

    Article  CAS  Google Scholar 

  42. FDA Guidance for Industry (1997) Center for Drug Evaluation and Research, Rockville, MD

  43. Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials 16:559–567

    Article  CAS  Google Scholar 

  44. Brazel CS, Peppas NA (1999) Mechanism of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer 40:3383–3398

    Article  CAS  Google Scholar 

  45. Gypta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH responsive drug delivery. Drug Discov Today 7:569–579

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge funding from the Ministry of Sciences of the Republic of Serbia, Fundamental Science Project No. 142023 ‘The synthesis and Characterization of Polymer (Nano)Composites of Defined Molecular and Supermolecular Structure’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melina Kalagasidis Krušić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalagasidis Krušić, M., Ilić, M. & Filipović, J. Swelling behaviour and paracetamol release from poly(N-isopropylacrylamide-itaconic acid) hydrogels. Polym. Bull. 63, 197–211 (2009). https://doi.org/10.1007/s00289-009-0086-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0086-3

Keywords

Navigation