Skip to main content
Log in

A limited sampling strategy to estimate individual pharmacokinetic parameters of methotrexate in children with acute lymphoblastic leukemia

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 04 July 2007

Abstract

Purpose

The objectives of this study were to characterize the population pharmacokinetics of MTX in patients with acute lymphoblastic leukemia (ALL) with ages ranging from 2 to 16 years and to propose a limited sampling strategy to estimate individual pharmacokinetic parameters.

Methods

Seventy-nine children were enrolled in this study; they received 1–4 courses of chemotherapy. MTX was administered at a dose of 5 g/m². MTX population parameters were estimated from 61 patients (231 courses; age range: 2–16 years). The data were analyzed by nonlinear mixed-effect modeling with use of a two-compartment structural model. The interoccasion variability was taken into account in the model. Eighteen additional patients (70 courses) were used to evaluate the predictive performances of the Bayesian approach and to devise a limited sampling strategy.

Results

The following population parameters were obtained: total clearance (CL) = 8.8 l/h (inter-individual variability: 43%), initial volume of distribution (V 1) = 17.3 l (48%), k 12 = 0.0225 h−1 (41%), and k 21 = 0.0629 h−1 (24%). The inter-individual variability in the initial volume of distribution was partially explained by the fact that this parameter was weight-dependent. Intercourse variability was limited, with a mean variation of 13.2%. The protocol involving two sampling times, 24 and 48 h after the beginning of infusion, allows precise and accurate determination of individual pharmacokinetic parameters and consequently, it was possible to predict the time at which the MTX concentration reached the predicted threshold (0.2 μM) below which the administration of folinic acid could be stopped.

Conclusion

The results of this study combine the relationships between the pharmacokinetic parameters of MTX and patient covariates that may be useful for dose adjustment, with a convenient sampling procedure that may aid in optimizing pediatric patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pui CH, Sandlund JT, Pei D, Rivera GK, Howard SC, Ribeiro RC, Rubnitz JE, Razzouk BI, Hudson MM, Cheng C, Raimondi SC, Behm FG, Downing JR, Relling MV, Evans WE (2003) Results of therapy for acute lymphoblastic leukemia in black and white children. JAMA 290:2001–2007

    Article  PubMed  CAS  Google Scholar 

  2. Pui CH, Reilling MV, Downing JR (2004) Acute lymphoblastic leukemia. N Engl J Med 350:1535–1548

    Article  PubMed  CAS  Google Scholar 

  3. Entz-Werle N, Suciu S, van der Werff ten Bosch J, Vilmer E, Bertrand Y, Benoit Y, Margueritte G, Plouvier E, Boutard P, Vandecruys E, Ferster A, Lutz P, Uyttebroeck A, Hoyoux C, Thyss A, Rialland X, Norton L, Pages MP, Philippe N, Otten J, Behar C, EORTC Children Leukemia Group (2005) Results of 58872 and 58921 trials in acute myeloblastic leukemia and relative value of chemotherapy vs allergenic bone marrow transplantation in first complete remission: the EORTC Children Leukemia Group report. Leukemia 19:2072–2081

    Article  PubMed  CAS  Google Scholar 

  4. Moe PJ, Holen A (2000) High-dose methotrexate in childhood ALL. Paediatr Hematol Oncol 17:615–622

    Article  CAS  Google Scholar 

  5. Cohen IJ (2004) Defining the appropriate dosage of folinic acid after high-dose methotrexate for childhood acute lymphatic leukemia that will prevent neurotoxicity without rescuing malignant cells in the central nervous system. J Pediatr Hematol Oncol 26:156–163

    Article  PubMed  Google Scholar 

  6. Mantadakis E, Cole PD, Kamen BA (2005) High-dose methotrexate in acute lymphoblastic leukemia: where is the evidence for its continued use? Pharmacotherapy 25:748–755

    Article  PubMed  CAS  Google Scholar 

  7. Bleyer WA (1977) Methotrexate: clinical pharmacology. Current status and therapeutic guidelines. Cancer Treat Rev 4:87–101

    Article  PubMed  CAS  Google Scholar 

  8. Sirotnak FM, Moccio DM (1980) Pharmacokinetic basis for differences in methotrexate sensitivity of normal proliferative tissues in the mouse. Cancer Res 40:1230–1234

    PubMed  CAS  Google Scholar 

  9. Relling MV, Fairclough D, Ayers D, Crom WR, Rodman JH, Pui CH, Evans WE (1994) Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol 12:1667–1672

    PubMed  CAS  Google Scholar 

  10. Treon SP, Chabner BA (1996) Concepts in use of high-dose methotrexate. Clin Chem 42:1322–1329

    PubMed  CAS  Google Scholar 

  11. Donelli MG, Zuccheti M, Robatto A, Perlangeli V, D’Incalci M, Masera G, Rossi MR (1995) Pharmacokinetics of HD-MTX in infants, children and adolescents with non-B acute lymphoblastic leukaemia. Med Pediatr Oncol 24:154–159

    Article  PubMed  CAS  Google Scholar 

  12. Crom WR, Glynn AM, Abromowitch M, Pui CH, Dodge R, Evans WE (1986) Use of the automatic interaction detector method to identify patient characteristics related to methotrexate clearance. Clin Pharmacol Ther 39:592–597

    Article  PubMed  CAS  Google Scholar 

  13. Rodman JH, Sunderland M, Kavanagh RL, Ochs J, Yalowich J, Evans WE, Rivera GK (1990) Pharmacokinetics of contineuous infusion of methotrexate and teniposide in paediatric cancer patients. Cancer Res 50:4267–4271

    PubMed  CAS  Google Scholar 

  14. Garre ML, Relling MV, Kalwinski D, Dodge R, Crom WR, Abromowitch M, Pui CH, Evans WE (1987) Pharmacokinetics and toxicity of methotrexate in children with Down syndrome and acute lymphocytic leukaemia. J Pediatr 111:606–612

    Article  PubMed  CAS  Google Scholar 

  15. Borsi JD, Moe PJ (1987) A comparative study of t he pharmacokinetic of methotrexate in a dose range of 0.5 g to 33.6 g/m² in children with acute lymphoblastic leukaemia. Cancer 60:5–13

    Article  PubMed  CAS  Google Scholar 

  16. Lawrence JR, Steele WH, Stuart JF, McNeill CA, McVie JG, Whiting B (1980) Dose dependent methotrexate elimination following bolus intravenous injection. Eur J Clin Pharmacol 17:371–374

    Article  PubMed  CAS  Google Scholar 

  17. Rask C, Albertioni F, Bentzen SM, Schroeder H, Peterson C (1998) Clinical and pharmacokinetic risk factors for high-dose methotrexate-induced toxicity in children with acute lymphoblastic leukaemia. Acta Oncol 37:277–284

    Article  PubMed  CAS  Google Scholar 

  18. Evans WE, Relling MV, Rodman JH, Crom WR, Boyett JM, Pui CH (1998) Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 338:499–505

    Article  PubMed  CAS  Google Scholar 

  19. Aquerreta I, Aldaz A, Giraldez J, Sierrasesumaga L (2002) Pharmacodynamics of high-dose methotrexate in pediatric patients. Oncology 36:1344–1349

    CAS  Google Scholar 

  20. Aquerreta I, Aldaz A, Giraldez J, Sierrasesumaga L (2004) Methotrexate pharmacokinetics and survival in osteosarcoma. Pediatr Blood Cancer 42:52–58

    Article  PubMed  Google Scholar 

  21. Wall AM, Gajjar A, Link A, Mahmoud H, Pui CH, Relling MV (2000) Individualized methotrexate dosing in children with relapsed acute lymphoblastic leukemia. Leukemia 14:221–225

    Article  PubMed  CAS  Google Scholar 

  22. Crews KR, Liu T, Rodriguez-Galindo C, Tan M, Meyer WH, Panetta JC, Link MP, Daw NC (2004) High-dose methotrexate pharmacokinetics and outcome of children and young adults with osteosarcoma. Cancer 100:1724–1733

    Article  PubMed  CAS  Google Scholar 

  23. Rousseau A, Sabot C, Delepine N, Delepine G, Debord J, Lachatre G, Marquet P (2002) Baysian estimation of methotrexate pharmacokinetic parameters and area under the curve in children and young adults with localised osteosarcoma. Clin Pharmacokinet 41:1095–1104

    Article  PubMed  CAS  Google Scholar 

  24. Odoul F, Le Guellec C, Lamagnere JP, Breilh D, Saux MC, Paintaud G, Autret-Leca E (1999) Prediction of MTX elimination after high dose infusion in children with acute lymphoblastic leukaemia using a population pharmacokinetic approach. Fundam Clin Pharmacol 13:595–604

    Article  PubMed  CAS  Google Scholar 

  25. Vinks AA (2002) The application of population pharmacokinetic modeling to individualized antibiotic therapy. Int J Antimicrob Agents 19:313–322

    Article  PubMed  CAS  Google Scholar 

  26. Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311

    PubMed  CAS  Google Scholar 

  27. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    PubMed  CAS  Google Scholar 

  28. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  PubMed  CAS  Google Scholar 

  29. Beal SL, Sheiner LB (1994) NONMEM user’s guide, University of California at San Francisco, San Francisco, USA

  30. Visual-NM program (1988) Visual-NM user’s manual, version 5.1. Research Development Population Pharmacokinetics, Montpellier, France

  31. Karlsson MO, Scheiner LB (1993) The importance of modelling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm 21:735–750

    Article  PubMed  CAS  Google Scholar 

  32. Al-Banna MK, Kelman AW, Whitng B (1990) Experimental design and efficient parameter estimation in population pharmacokinetics. J Pharmacokinet Biopharm 18:347–360

    Article  PubMed  CAS  Google Scholar 

  33. Drusano GL (1991) Optimal sampling theory and population modelling: application to determination of the influence of the microgravity environment on drug distribution and elimination. J Clin Pharmacol 31:962–967

    PubMed  CAS  Google Scholar 

  34. Endrenyi L (1981) Design of experiments for estimating enzyme and pharmacokinetic experiments. In: Endrenyi L (eds) Kinetic data analysis, design and analysis of enzyme and pharmacokinetic experiments. Plenum Press, New York, 137–167

    Google Scholar 

  35. Hurst AK, Yoshinaga MA, Mitani GH, Foo KA, Jelliffe RW, Harrison EC (1990) Application of a Bayesian method to monitor and adjust vancomycin dosage regimens. Antimicrob Agents Chemother 34:1165–1171

    PubMed  CAS  Google Scholar 

  36. Sheiner LB, Beal SL (1981) Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 9:503–512

    Article  PubMed  CAS  Google Scholar 

  37. Sheiner LB, Beal SL (1981) Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experimental pharmacokinetic data. J Pharmacokinet Biopharm 9:635–651

    Article  PubMed  CAS  Google Scholar 

  38. Meibohm B, Läer S, Panetta JC, Barrett J (2005) Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J 7:E475–E487

    Article  PubMed  Google Scholar 

  39. Note for guidance on clinical investigation of medicinal products in the paediatric population (CPMP/ICH/2711/99). http://www.emea.eu.int/pdfs/human/ich/271199EN.pdf

  40. Patoux A, Bleyzac N, Boddy AV, Doz F, Rubie H, Bastian G, Maire P, Canal P, Chatelut E (2001) Comparison of nonlinear mixed-effect and non-parametric expectation maximisation modelling for Bayesian estimation of carboplatin clearance in children. Eur J Clin Pharmacol 57:297–303

    Article  PubMed  CAS  Google Scholar 

  41. de Hoog M, Schoemaker RC, van den Anker JN, Vinks A (2002) NONMEM and NPEM2 population modeling: a comparison using tobramycin data in neonates. Ther Drug Monit 24:359–365

    Article  PubMed  Google Scholar 

  42. Skarby T, Jonsson P, Hjorth L, Behrentz M, Bjork O, Forestier E, Jarfelt M, Lonnerholm G, Hoglund P (2003) High-dose methotrexate: on the relationship of methotrexate elimination time vs renal function and serum methotrexate levels in 1164 courses in 264 Swedish children with acute lymphoblastic leukaemia (ALL). Cancer Chemother Pharmacol 51:311–320

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

To the children and their parents, to Maria-Claude Linus-Sorbet for secretary assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Bressolle.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00280-007-0550-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piard, C., Bressolle, F., Fakhoury, M. et al. A limited sampling strategy to estimate individual pharmacokinetic parameters of methotrexate in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 60, 609–620 (2007). https://doi.org/10.1007/s00280-006-0394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0394-3

Keywords

Navigation