Skip to main content

Advertisement

Log in

Enhanced human mesenchymal stem cell survival under oxidative stress by overexpression of secreted frizzled-related protein 2 gene

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Human mesenchymal stem cells (hMSCs) have been used to improve engraftment and to treat graft versus host disease following allogeneic hematopoietic stem cell transplantation. However, oxidative stress presented in the microenvironment can damage the transplanted hMSCs and therefore reduce their survival in target organs. We investigated how to enhance the survival of hMSCs under oxidative stress by overexpressing secreted frizzled-related protein 2 (sFRP2) gene in bone marrow-derived hMSCs and umbilical cord-derived hMSCs. The survival and characteristics of those sFRP2-overexpressing hMSCs (sFRP2-BM-hMSCs and sFRP2-UC-hMSCs) were studied compared with non-transduced hMSCs. We found that the percentages of viable cells in culture of sFRP2-BM-hMSCs and sFRP2-UC-hMSCs in the absence or presence of 0.75 mM H2O2 were significantly higher than those of their non-transduced counterparts. The overexpression of sFRP2 gene did not affect the characteristics of hMSCs regarding their morphology, surface marker expression, and differentiation potential. Our study suggests that overexpression of sFRP2 gene in hMSCs might improve the therapeutic effectiveness of hMSC transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AM:

Amnion

BM:

Bone marrow

CO2 :

Carbon dioxide

DMEM:

Dulbecco’s modified Eagle’s medium

H2O2 :

Hydrogen peroxide

hMSCs:

Human mesenchymal stem cells

PBS:

Phosphate-buffered saline

PL:

Placenta

sFRP2:

Secreted frizzled-related protein 2

sFRP2-BM-hMSCs:

Human bone marrow-derived mesenchymal stem cells which are stably transduced with sFRP2 overexpressing plasmid

sFRP2-UC-hMSCs:

Human umbilical cord-derived mesenchymal stem cells which are stably transduced with sFRP2 overexpressing plasmid

UC:

Umbilical cord

WJ:

Wharton’s jelly

References

  1. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28:585–596

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Diaz-Prado S, Muinos-Lopez E, Hermida-Gomez T et al (2010) Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem 111:846–857

    Article  CAS  PubMed  Google Scholar 

  4. Hass R, Kasper C, Bohm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wang HS, Hung SC, Peng ST et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  PubMed  Google Scholar 

  6. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  7. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  CAS  PubMed  Google Scholar 

  8. Bartholomew A, Sturgeon C, Siatskas M et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    Article  PubMed  Google Scholar 

  9. Benvenuto F, Ferrari S, Gerdoni E et al (2007) Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 25:1753–1760

    Article  CAS  PubMed  Google Scholar 

  10. Choi M, Lee HS, Naidansaren P et al (2013) Proangiogenic features of Wharton’s jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels. Int J Biochem Cell Biol 45:560–570

    Article  CAS  PubMed  Google Scholar 

  11. Glennie S, Soeiro I, Dyson PJ et al (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–2827

    Article  CAS  PubMed  Google Scholar 

  12. Roubelakis MG, Tsaknakis G, Pappa KI et al (2013) Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS One 8:e54747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Jiang XX, Zhang Y, Liu B et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126

    Article  CAS  PubMed  Google Scholar 

  14. Krampera M, Glennie S, Dyson J et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729

    Article  CAS  PubMed  Google Scholar 

  15. Shi M, Liu ZW, Wang FS (2011) Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol 164:1–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Carrancio S, Romo C, Ramos T et al (2013) Effects of MSC coadministration and route of delivery on cord blood hematopoietic stem cell engraftment. Cell Transplant 22:1171–1183

    Article  CAS  PubMed  Google Scholar 

  17. Macmillan ML, Blazar BR, DeFor TE, Wagner JE (2009) Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I–II clinical trial. Bone Marrow Transplant 43:447–454

    Article  CAS  PubMed  Google Scholar 

  18. Meuleman N, Tondreau T, Ahmad I et al (2009) Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells Dev 18:1247–1252

    Article  PubMed  Google Scholar 

  19. Fang B, Song Y, Liao L et al (2007) Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc 39:3358–3362

    Article  CAS  PubMed  Google Scholar 

  20. Kebriaei P, Isola L, Bahceci E et al (2009) Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transpl 15:804–811

    Article  CAS  Google Scholar 

  21. Muroi K, Miyamura K, Ohashi K et al (2013) Unrelated allogeneic bone marrow-derived mesenchymal stem cells for steroid-refractory acute graft-versus-host disease: a phase I/II study. Int J Hematol 98:206–213

    Article  CAS  PubMed  Google Scholar 

  22. Perez-Simon JA, Lopez-Villar O, Andreu EJ et al (2011) Mesenchymal stem cells expanded in vitro with human serum for the treatment of acute and chronic graft-versus-host disease: results of a phase I/II clinical trial. Haematologica 96:1072–1076

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ringden O, Uzunel M, Rasmusson I et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81:1390–1397

    Article  PubMed  Google Scholar 

  24. von Bonin M, Stolzel F, Goedecke A et al (2009) Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 43:245–251

    Article  Google Scholar 

  25. Haider H, Ashraf M (2008) Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 45:554–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Toma C, Pittenger MF, Cahill KS et al (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  27. Aiello S, Cassis P, Mister M et al (2011) Rabbit anti-rat thymocyte immunoglobulin preserves renal function during ischemia/reperfusion injury in rat kidney transplantation. Transpl Int 24:829–838

    Article  CAS  PubMed  Google Scholar 

  28. Danilovic A, Lucon AM, Srougi M et al (2011) Protective effect of N-acetylcysteine on early outcomes of deceased renal transplantation. Transplant Proc 43:1443–1449

    Article  CAS  PubMed  Google Scholar 

  29. Czubkowski P, Socha P, Pawlowska J (2011) Oxidative stress in liver transplant recipients. Ann Transpl 16:99–108

    Google Scholar 

  30. Tain YL, Muller V, Szabo A et al (2006) Lack of long-term protective effect of antioxidant/anti-inflammatory therapy in transplant-induced ischemia/reperfusion injury. Am J Nephrol 26:213–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Robey TE, Saiget MK, Reinecke H, Murry CE (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45:567–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Leyns L, Bouwmeester T, Kim SH et al (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88:747–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lin K, Wang S, Julius MA et al (1997) The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling. Proc Natl Acad Sci U S A 94:11196–11200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wang S, Krinks M, Lin K et al (1997) Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88:757–766

    Article  CAS  PubMed  Google Scholar 

  35. Mirotsou M, Zhang Z, Deb A et al (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104:1643–1648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Alfaro MP, Pagni M, Vincent A et al (2008) The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci U S A 105:18366–18371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zhang Z, Deb A, Zhang Z et al (2009) Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol 46:370–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Alfaro MP, Vincent A, Saraswati S et al (2010) sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair. J Biol Chem 285:35645–35653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research project was funded by grants from Thailand Research Fund (grant no. RTA 488-0007), the Commission on Higher Education (grant no. CHE-RES-RG-49), Siriraj Graduate Scholarship, and Siriraj Graduate Thesis Scholarship. S. Issaragrisil is a Senior Research Scholar of Thailand Research Fund. There were no commercial organizations or funding bodies associated with data collection and analysis or with this study manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Authors’ contributions

KP carried out the experiments and helped in drafting the manuscript. PK performed data analysis, participated in the study design, supervised the study, and wrote the manuscript. YU carried out the experiments and performed data analysis. MW participated in data analysis and assisted in drafting the manuscript. NC participated in data analysis and assisted in drafting the manuscript. SI conceived and supervised the study and finalized the manuscript. All of the authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surapol Issaragrisil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file 1

Survival of BM-hMSCs, UC-hMSCs, WJ-hMSCs, PL-hMSCs, and AM-hMSCs under oxidative stress condition generated by the addition of 1 mM H2O2 as determined by flow cytometry using FITC Annexin V Apoptosis Detection Kit I (GIF 40 kb)

High resolution image (TIFF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomduk, K., Kheolamai, P., U-Pratya, Y. et al. Enhanced human mesenchymal stem cell survival under oxidative stress by overexpression of secreted frizzled-related protein 2 gene. Ann Hematol 94, 319–327 (2015). https://doi.org/10.1007/s00277-014-2210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-014-2210-1

Keywords

Navigation