Skip to main content

Advertisement

Log in

Intratumoral interferon-gamma increases chemokine production but fails to increase T cell infiltration of human melanoma metastases

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Introduction

Optimal approaches to induce T cell infiltration of tumors are not known. Chemokines CXCL9, CXCL10, and CXCL11 support effector T cell recruitment and may be induced by IFN. This study tests the hypothesis that intratumoral administration of IFNγ will induce CXCL9–11 and will induce T cell recruitment and anti-tumor immune signatures in melanoma metastases.

Patients and methods

Nine eligible patients were immunized with a vaccine comprised of 12 class I MHC-restricted melanoma peptides and received IFNγ intratumorally. Effects on the tumor microenvironment were evaluated in sequential tumor biopsies. Adverse events (AEs) were recorded. T cell responses to vaccination were assessed in PBMC by IFNγ ELISPOT assay. Tumor biopsies were evaluated for immune cell infiltration, chemokine protein expression, and gene expression.

Results

Vaccination and intratumoral administration of IFNγ were well tolerated. Circulating T cell responses to vaccine were detected in six of nine patients. IFNγ increased production of chemokines CXCL10, CXCL11, and CCL5 in patient tumors. Neither vaccination alone, nor the addition of IFNγ promoted immune cell infiltration or induced anti-tumor immune gene signatures.

Conclusion

The melanoma vaccine induced circulating T cell responses, but it failed to infiltrate metastases, thus highlighting the need for combination strategies to support T cell infiltration. A single intratumoral injection of IFNγ induced T cell-attracting chemokines; however, it also induced secondary immune regulation that may paradoxically limit immune infiltration and effector functions. Alternate dosing strategies or additional combinatorial treatments may be needed to promote trafficking and retention of tumor-reactive T cells in melanoma metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

12MP:

12 class I MHC-restricted melanoma peptides

AEs:

Adverse events

CALCRL:

Calcitonin receptor-like

CCL:

C–C motif chemokine ligand (applies to CCL5, CCL21, CCL22)

CCR5:

C–C motif chemokine receptor 5

CEF peptides:

Pool of 32 peptides from CMV, Epstein–Barr virus, and influenza proteins

CV:

Coefficient of variation

CXCL:

C–X–C motif chemokine ligand (applies to CXCL9, CXCL10, CXCL11)

CXCR3:

Chemokine (C–X–C motif) receptor 3

FABP4:

Fatty acid-binding protein 4

LPL:

Lipoprotein lipase

mcg:

Micrograms

MIR125B1:

MicroRNA 125b-1

NCI:

National Cancer Institute

RNU6-620P:

RNA, U6 small nuclear 620, pseudogene

SECTM1:

Secreted and transmembrane protein 1

Th1:

T helper, type 1

TME:

Tumor microenvironment

References

  1. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea S, Dengel LT, Patterson JW, Slingluff CL Jr (2012) Immunotype and immunohistologic characteristics of tumor infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 72(5):1070–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J (2011) Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol 23(2):286–292

    Article  CAS  PubMed  Google Scholar 

  3. Bedognetti D, Wang E, Sertoli MR, Marincola FM (2010) Gene-expression profiling in vaccine therapy and immunotherapy for cancer. Expert Rev Vaccines 9(6):555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bogunovic D, O’Neill DW, Belitskaya-Levy I, Vacic V, Yu YL, Adams S, Darvishian F, Berman R, Shapiro R, Pavlick AC, Lonardi S, Zavadil J, Osman I, Bhardwaj N (2009) Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci USA 106(48):20429–20434. doi:10.1073/pnas.0905139106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fridman WH, Galon J, Dieu-Nosjean MC, Cremer I, Fisson S, Damotte D, Pages F, Tartour E, Sautes-Fridman C (2011) Immune infiltration in human cancer: prognostic significance and disease control. Curr Top Microbiol Immunol 344:1–24. doi:10.1007/82_2010_46.:1-24

    CAS  PubMed  Google Scholar 

  6. Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL (1995) The role of CXC chemokines as regulators of angiogenesis. Shock 4(3):155–160

    Article  CAS  PubMed  Google Scholar 

  7. Strieter RM, Belperio JA, Burdick MD, Sharma S, Dubinett SM, Kearns P (2004) CXC chemokines: angiogenesis, immunoangiostasis, and metastases in lung cancer. Ann N Y Acad Sci 1028:351–360

    Article  CAS  PubMed  Google Scholar 

  8. Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, McKee M, Gajewski TF (2009) Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69(7):3077–3085

    Article  CAS  PubMed  Google Scholar 

  9. Mullins IM, Slingluff CL, Lee JK, Garbee CF, Shu J, Anderson SG, Mayer ME, Knaus WA, Mullins DW (2004) CXC chemokine receptor 3 expression by activated CD8+ T cells is associated with survival in melanoma patients with stage III disease. Cancer Res 64(21):7697–7701

    Article  CAS  PubMed  Google Scholar 

  10. Clancy-Thompson E, King LK, Nunnley LD, Mullins IM, Slingluff CL Jr, Mullins DW (2013) Peptide vaccination in Montanide adjuvant induces and GM-CSF increases CXCR3 and cutaneous lymphocyte antigen expression by tumor antigen-specific CD8 T cells. Cancer Immunol Res 1(5):332–339. doi:10.1158/2326-6066.cir-13-0084

    Article  CAS  PubMed  Google Scholar 

  11. Dengel LT, Norrod AG, Gregory BL, Clancy-Thompson E, Burdick MD, Strieter RM, Slingluff CL Jr, Mullins DW (2010) Interferons induce CXCR3-cognate chemokine production by human metastatic melanoma. J Immunother 33(9):965–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baird JR, Byrne KT, Lizotte PH, Toraya-Brown S, Scarlett UK, Alexander MP, Sheen MR, Fox BA, Bzik DJ, Bosenberg M, Mullins DW, Turk MJ, Fiering S (2013) Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge. J Immunol 190(1):469–478. doi:10.4049/jimmunol.1201209

    Article  CAS  PubMed  Google Scholar 

  13. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111

    Article  CAS  PubMed  Google Scholar 

  14. Zhu X, Fallert-Junecko BA, Fujita M, Ueda R, Kohanbash G, Kastenhuber ER, McDonald HA, Liu Y, Kalinski P, Reinhart TA, Salazar AM, Okada H (2010) Poly-ICLC promotes the infiltration of effector T cells into intracranial gliomas via induction of CXCL10 in IFN-alpha and IFN-gamma dependent manners. Cancer Immunol Immunother 59(9):1401–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, Yagita H, Overwijk WW, Lizee G, Radvanyi L, Hwu P (2012) PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res 72(20):5209–5218. doi:10.1158/0008-5472.CAN-12-1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, Gajewski TF (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5(200):200ra116

    Article  PubMed  PubMed Central  Google Scholar 

  17. Slingluff CL Jr, Petroni GR, Chianese-Bullock KA, Smolkin ME, Hibbitts S, Murphy C, Johansen N, Grosh WW, Yamshchikov GV, Neese PY, Patterson JW, Fink R, Rehm PK (2007) Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin Cancer Res 13(21):6386–6395

    Article  CAS  PubMed  Google Scholar 

  18. Slingluff CL Jr, Petroni GR, Olson WC, Smolkin ME, Ross MI, Haas NB, Grosh WW, Boisvert ME, Kirkwood JM, Chianese-Bullock KA (2009) Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res 15(22):7036–7044. doi:10.1158/1078-0432.ccr-09-1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Slingluff CL Jr, Petroni GR, Chianese-Bullock KA, Smolkin ME, Ross MI, Haas NB, von Mehren M, Grosh WW (2011) Randomized multicenter trial of the effects of melanoma-associated helper peptides and cyclophosphamide on the immunogenicity of a multipeptide melanoma vaccine. J Clin Oncol 29(21):2924–2932. doi:10.1200/jco.2010.33.8053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Slingluff CL Jr, Petroni GR, Smolkin ME, Chianese-Bullock KA, Smith K, Murphy C, Galeassi N, Neese PY, Grosh WW, Nail CJ, Ross MI, Haas NB, Boisvert ME, Kirkwood JM (2010) Immunogenicity for CD8+ and CD4+ T cells of two formulations of an incomplete Freund’s adjuvant for multipeptide melanoma vaccines. J Immunother 33:630–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Slingluff CL Jr, Petroni GR, Olson WC, Smolkin ME, Chianese-Bullock KA, Mauldin IS, Smith KT, Deacon DH, Varhegyi NE, Donnelly SB, Reed CM, Scott K, Galeassi NV, Grosh WW (2016) A randomized pilot trial testing the safety and immunologic effects of a MAGE-A3 protein plus AS15 immunostimulant administered into muscle or into dermal/subcutaneous sites. Cancer Immunol Immunother 65(1):25–36. doi:10.1007/s00262-015-1770-9

    Article  CAS  PubMed  Google Scholar 

  22. Currier JR, Kuta EG, Turk E, Earhart LB, Loomis-Price L, Janetzki S, Ferrari G, Birx DL, Cox JH (2002) A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays. J Immunol Methods 260(1–2):157–172

    Article  CAS  PubMed  Google Scholar 

  23. Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26

    Article  CAS  PubMed  Google Scholar 

  24. Singh M, Overwijk WW (2015) Intratumoral immunotherapy for melanoma. Cancer Immunol Immunother 64(7):911–921. doi:10.1007/s00262-015-1727-z

    Article  CAS  PubMed  Google Scholar 

  25. Sadanaga N, Nagoshi M, Lederer JA, Joo HG, Eberlein TJ, Goedegebuure PS (1999) Local secretion of IFN-gamma induces an antitumor response: comparison between T cells plus IL-2 and IFN-gamma transfected tumor cells. J Immunother 22(4):315–323

    Article  CAS  PubMed  Google Scholar 

  26. Clancy-Thompson E, Perekslis TJ, Croteau W, Alexander MP, Chabanet TB, Turk MJ, Huang YH, Mullins DW (2015) Melanoma induces, and adenosine suppresses, CXCR3-cognate chemokine production and T-cell infiltration of lungs bearing metastatic-like disease. Cancer Immunol Res 3(8):956–967. doi:10.1158/2326-6066.cir-15-0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanese K, Grimm EA, Ekmekcioglu S (2012) The role of melanoma tumor-derived nitric oxide in the tumor inflammatory microenvironment: its impact on the chemokine expression profile, including suppression of CXCL10. Int J Cancer 131(4):891–901. doi:10.1002/ijc.26451

    Article  CAS  PubMed  Google Scholar 

  28. Hong M, Puaux AL, Huang C, Loumagne L, Tow C, Mackay C, Kato M, Prevost-Blondel A, Avril MF, Nardin A, Abastado JP (2011) Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res 71(22):6997–7009

    Article  CAS  PubMed  Google Scholar 

  29. Muthuswamy R, Berk E, Junecko BF, Zeh HJ, Zureikat AH, Normolle D, Luong TM, Reinhart TA, Bartlett DL, Kalinski P (2012) NF-kappaB hyperactivation in tumor tissues allows tumor-selective reprogramming of the chemokine microenvironment to enhance the recruitment of cytolytic T effector cells. Cancer Res 72(15):3735–3743. doi:10.1158/0008-5472.can-11-4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Teramura Y, Watanabe Y, Kan N, Masuda T, Kuribayashi K (1993) Interferon-gamma-producing tumor induces host tumor-specific T cell responses. Jpn J Cancer Res Gann 84(6):689–696

    Article  CAS  PubMed  Google Scholar 

  31. Huang H, Liu Y, Xiang J (2002) Synergistic effect of adoptive T-cell therapy and intratumoral interferon gamma-inducible protein-10 transgene expression in treatment of established tumors. Cell Immunol 217(1–2):12–22

    Article  CAS  PubMed  Google Scholar 

  32. Yu D, Thomas-Tikhonenko A (2001) Intratumoral delivery of an interferon gamma retrovirus-producing cells inhibits growth of a murine melanoma by a non-immune mechanism. Cancer Lett 173(2):145–154

    Article  CAS  PubMed  Google Scholar 

  33. Casrouge A, Decalf J, Ahloulay M, Lababidi C, Mansour H, Vallet-Pichard A, Mallet V, Mottez E, Mapes J, Fontanet A, Pol S, Albert ML (2011) Evidence for an antagonist form of the chemokine CXCL10 in patients chronically infected with HCV. J Clin Invest 121(1):308–317. doi:10.1172/jci40594

    Article  CAS  PubMed  Google Scholar 

  34. Rainczuk A, Rao JR, Gathercole JL, Fairweather NJ, Chu S, Masadah R, Jobling TW, Deb-Choudhury S, Dyer J, Stephens AN (2014) Evidence for the antagonistic form of CXC-motif chemokine CXCL10 in serous epithelial ovarian tumours. Int J Cancer 134(3):530–541. doi:10.1002/ijc.28393

    Article  CAS  PubMed  Google Scholar 

  35. Salerno EP, Shea SM, Olson WC, Petroni GR, Smolkin ME, McSkimming C, Chianese-Bullock KA, Slingluff CL Jr (2013) Activation, dysfunction and retention of T cells in vaccine sites after injection of incomplete Freund’s adjuvant, with or without peptide. Cancer Immunol Immunother 62(7):1149–1159. doi:10.1007/s00262-013-1435-5

    Article  CAS  PubMed  Google Scholar 

  36. Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, Liu C, Lou Y, Wang Z, Ma W, Rabinovich B, Schluns KS, Davis RE, Hwu P, Overwijk WW (2013) Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med 19(4):465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17(11):1498–1503. doi:10.1038/nm.2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nikitenko LL, Brown NS, Smith DM, MacKenzie IZ, Bicknell R, Rees MC (2001) Differential and cell-specific expression of calcitonin receptor-like receptor and receptor activity modifying proteins in the human uterus. Mol Hum Reprod 7(7):655–664

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Na S, Liu C, Pan S, Cai J, Qiu J (2016) MicroRNA-125b suppresses the epithelial–mesenchymal transition and cell invasion by targeting ITGA9 in melanoma. Tumour Biol 37(5):5941–5949. doi:10.1007/s13277-015-4409-8

    Article  CAS  PubMed  Google Scholar 

  40. Wang T, Huang C, Lopez-Coral A, Slentz-Kesler KA, Xiao M, Wherry EJ, Kaufman RE (2012) K12/SECTM1, an interferon-gamma regulated molecule, synergizes with CD28 to costimulate human T cell proliferation. J Leukoc Biol 91(3):449–459. doi:10.1189/jlb.1011498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuemmerle NB, Rysman E, Lombardo PS, Flanagan AJ, Lipe BC, Wells WA, Pettus JR, Froehlich HM, Memoli VA, Morganelli PM, Swinnen JV, Timmerman LA, Chaychi L, Fricano CJ, Eisenberg BL, Coleman WB, Kinlaw WB (2011) Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol Cancer Ther 10(3):427–436. doi:10.1158/1535-7163.mct-10-0802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carter SA, Foster NA, Scarpini CG, Chattopadhyay A, Pett MR, Roberts I, Coleman N (2012) Lipoprotein lipase is frequently overexpressed or translocated in cervical squamous cell carcinoma and promotes invasiveness through the non-catalytic C terminus. Br J Cancer 107(4):739–747. doi:10.1038/bjc.2012.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Platten M, Wick W, Van den Eynde BJ (2012) Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 72(21):5435–5440. doi:10.1158/0008-5472.can-12-0569

    Article  CAS  PubMed  Google Scholar 

  44. Rutkowski MJ, Sughrue ME, Kane AJ, Mills SA, Parsa AT (2010) Cancer and the complement cascade. Mol Cancer Res 8(11):1453–1465. doi:10.1158/1541-7786.mcr-10-0225

    Article  CAS  PubMed  Google Scholar 

  45. Spranger S, Gajewski TF (2015) A new paradigm for tumor immune escape: beta-catenin-driven immune exclusion. J Immunother Cancer 3:3. doi:10.1186/s40425-015-0089-6

    Article  Google Scholar 

  46. Spranger S, Bao RY, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–261. doi:10.1038/nature14404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Robert M. Strieter for guidance and clinical trial design; Caroline Reed, Thomas J. Perekslis, and the University of Virginia Biorepository and Tissue Research Facility for technical assistance with assays; the Geisel School of Medicine’s Immune Monitoring and Flow Cytometry Shared Resource (DartLab) for assistance with multiplex protein assays; Joseph Obeid for assistance with software for data presentation; and Dr. Stefan Bekiranov for advising on gene array analysis. We appreciate the work of Patrice Neese and Carmel Nail for administering vaccines and for recording and managing toxicities. Appreciation also goes to clinical research coordinators Kristy Scott and Emily Allred.

Funding

Support for this work was provided by the University of Virginia Cancer Center Support Grant (National Institutes of Health/NCI P30 CA44579: Clinical Trials Office, Biorepository and Tissue Research Facility, Flow Cytometry Core, Biomolecular Core Facility, and pilot projects funding). Additional philanthropic support was provided by George and Linda Suddock and by Alice and Bill Goodwin and the Commonwealth Foundation for Cancer Research. Support was also provided by the Rebecca Clary Harris Fellowship (Ileana S. Mauldin), the University of Virginia Cancer Training Grant T32 CA009109 (Ileana S. Mauldin), a Melanoma Research Alliance Young Investigator Award (David W. Mullins), National Institutes of Health/NCI R01 CA134799 (David W. Mullins), and National Institutes of Health/NCI K25 CA181638 (Nolan A. Wages).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig L. Slingluff Jr..

Ethics declarations

Conflict of interest

Craig Slingluff is an inventor of several peptides included in the vaccine that was administered during the clinical trials studied within this paper. The University of Virginia Licensing and Ventures Group holds the patents for those peptides, which have been licensed through the Ludwig Institute for Cancer Research to GlaxoSmithKline. He also has relationships with several commercial interests related to this work, including Immatics (member, Scientific Advisory Board), Polynoma (principal investigator for MAVIS cancer vaccine trial), GlaxoSmithKline (recipient of grant support for a clinical trial), but funds from those relationships go to the University of Virginia, and not to Dr. Slingluff personally. The remaining authors have nothing to disclose or competing interests in association with this study.

Additional information

This paper is published together with doi:10.1007/s00262-016-1880-z.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauldin, I.S., Wages, N.A., Stowman, A.M. et al. Intratumoral interferon-gamma increases chemokine production but fails to increase T cell infiltration of human melanoma metastases. Cancer Immunol Immunother 65, 1189–1199 (2016). https://doi.org/10.1007/s00262-016-1881-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1881-y

Keywords

Navigation