Skip to main content
Log in

Clinical applications of 3D T2-weighted MRI in pelvic imaging

  • Review Paper
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Objective

The purpose of this article is to illustrate clinical applications of 3D T2-weighted MRI in pelvic imaging. We review technical considerations of 3D T2-weighted MRI with clinical examples.

Conclusion

3D T2-weighted MRI has been increasingly utilized for pelvic applications, including imaging of rectal cancer, prostate cancer, anorectal fistulas and the female pelvis. This relatively rapid technique offers good soft-tissue contrast of the pelvic organs, with potential for more widespread clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. de Miguel Criado J, et al. (2012) MR imaging evaluation of perianal fistulas: spectrum of imaging features. Radiographics 32(1):175–194

    Article  PubMed  Google Scholar 

  2. Mugler J, Meyer H, Kiefer B (2003) Practical implementation of optimized tissue-specific prescribed signal evolutions for improved turbo-spin-echo imaging [abstr]. In: Proceedings of the Eleventh Meeting of the International Society for Magnetic Resonance in Medicine, Toronto. Berkeley, CA: International Society for Magnetic Resonance in Medicine, 2003

  3. Scott K, Schmeets S (2005) SPACE: an innovative solution to rapid low SAR T2-weighted contrast in 3D spin echo imaging. Magnetom Flash pp 92–95

  4. Kim SH, et al. (2008) Sonography transmission gel as endorectal contrast agent for tumor visualization in rectal cancer. Am J Roentgenol 191(1):186–189

    Article  Google Scholar 

  5. Taylor FG, et al. (2008) A systematic approach to the interpretation of preoperative staging MRI for rectal cancer. Am J Roentgenol 191(6):1827–1835

    Article  Google Scholar 

  6. Kaur H, et al. (2012) MR imaging for preoperative evaluation of primary rectal cancer: practical considerations. Radiographics 32(2):389–409

    Article  PubMed  Google Scholar 

  7. Akata D, et al. (2005) Efficacy of transvaginal contrast-enhanced MRI in the early staging of cervical carcinoma. Eur Radiol 15(8):1727–1733

    Article  PubMed  Google Scholar 

  8. Marcal L, et al. (2010) Deep pelvic endometriosis: MR imaging. Abdom Imaging 35(6):708–715

    Article  PubMed  Google Scholar 

  9. Novellas S, et al. (2009) Anatomy of the female pelvis on MRI: value of intravaginal contrast. J Radiol 90(7–8 Pt 1):819–824

    Article  PubMed  CAS  Google Scholar 

  10. Huch Boni RA, et al. (1995) Contrast-enhanced endorectal coil MRI in local staging of prostate carcinoma. J Comput Assist Tomogr 19(2):232–237

    Article  PubMed  CAS  Google Scholar 

  11. Vogl TJ, et al. (1997) Accuracy of staging rectal tumors with contrast-enhanced transrectal MR imaging. Am J Roentgenol 168(6):1427–1434

    Article  CAS  Google Scholar 

  12. Grand DJ, Mayo-Smith WW, Woodfield CA (2012) Practical body MRI: protocols, applications and image interpretation. Cambridge: Cambridge University Press

    Book  Google Scholar 

  13. Futterer JJ, et al. (2008) Preoperative 3 T MR imaging of rectal cancer: local staging accuracy using a two-dimensional and three-dimensional T2-weighted turbo spin echo sequence. Eur J Radiol 65(1):66–71

    Article  PubMed  Google Scholar 

  14. Sosna J, et al. (2004) MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol 11(8):857–862

    Article  PubMed  Google Scholar 

  15. Barentsz JO, et al. (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757

    Article  PubMed  PubMed Central  Google Scholar 

  16. Em H (1999) Magnetic resonance imaging: physical principles and sequence design, 1st edn. New York: Wiley

    Google Scholar 

  17. Kim BS, et al. (2012) Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer. Yonsei Med J 53(3):550–556

    Article  PubMed  PubMed Central  Google Scholar 

  18. Torricelli P, et al. (2006) Comparative evaluation between external phased array coil at 3 T and endorectal coil at 1.5 T: preliminary results. J Comput Assist Tomogr 30(3):355–361

    Article  PubMed  Google Scholar 

  19. Patel VH, Somers S (1997) MR imaging of the female pelvis: current perspectives and review of genital tract congenital anomalies, and benign and malignant diseases. Crit Rev Diagn Imaging 38(5):417–499

    PubMed  CAS  Google Scholar 

  20. Proscia N, et al. (2010) MRI of the pelvis in women: 3D versus 2D T2-weighted technique. Am J Roentgenol 195(1):254–259

    Article  Google Scholar 

  21. Rosenkrantz AB, et al. (2010) Prostate cancer: comparison of 3D T2-weighted with conventional 2D T2-weighted imaging for image quality and tumor detection. Am J Roentgenol 194(2):446–452

    Article  Google Scholar 

  22. Hori M, et al. (2011) Uterine tumors: comparison of 3D versus 2D T2-weighted turbo spin-echo MR imaging at 3.0 T—initial experience. Radiology 258(1):154–163

    Article  PubMed  Google Scholar 

  23. Kim H, et al. (2010) Rectal cancer: comparison of accuracy of local-regional staging with two- and three-dimensional preoperative 3-T MR imaging. Radiology 254(2):485–492

    Article  PubMed  Google Scholar 

  24. Wang L, et al. (2007) Incremental value of multiplanar cross-referencing for prostate cancer staging with endorectal MRI. Am J Roentgenol 188(1):99–104

    Article  Google Scholar 

  25. Brown M, Semelka R (2011) MRI: basic principles and applications, 4th edn. Oxford: Wiley-Blackwell (264)

    Google Scholar 

  26. Hecht EM, et al. (2011) Preliminary clinical experience at 3 T with a 3D T2-weighted sequence compared with multiplanar 2D for evaluation of the female pelvis. Am J Roentgenol 197(2):W346–W352

    Article  Google Scholar 

  27. Lichy MP, et al. (2005) Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences. Invest Radiol 40(12):754–760

    Article  PubMed  Google Scholar 

  28. Reimer P, Parizel PM, Stichnoth F-A (eds) (2006) Clinical MR imaging: a practical approach, 2nd edn. Springer, Berlin, p 597

  29. Lim RP, et al. (2006) Imaging the female pelvis at 3.0 T. Top Magn Reson Imaging 17(6):427–443

    Article  PubMed  Google Scholar 

  30. Rosenkrantz AB, et al. (2010) Liver MRI at 3 T using a respiratory-triggered time-efficient 3D T2-weighted technique: impact on artifacts and image quality. AJR Am J Roentgenol 194(3):634–641

    Article  PubMed  Google Scholar 

  31. Storey P et al. (2009) B1 inhomogeneity in the thigh at 3T and implications for peripheral vascular imaging. In: Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, HI, USA

  32. Haystead CM, Dale BM, Merkle EM (2008) N/2 ghosting artifacts: elimination at 3.0-T MR cholangiography with SPACE pulse sequence. Radiology 246(2):589–595

    Article  PubMed  Google Scholar 

  33. Franklin KM, Dale BM, Merkle EM (2008) Improvement in B1-inhomogeneity artifacts in the abdomen at 3T MR imaging using a radiofrequency cushion. J Magn Reson Imaging 27(6):1443–1447

    Article  PubMed  Google Scholar 

  34. Kataoka M, et al. (2007) MR imaging of the female pelvis at 3 Tesla: evaluation of image homogeneity using different dielectric pads. J Magn Reson Imaging 26(6):1572–1577

    Article  PubMed  Google Scholar 

  35. Saekho S, et al. (2005) Small tip angle three-dimensional tailored radiofrequency slab-select pulse for reduced B1 inhomogeneity at 3 T. Magn Reson Med 53(2):479–484

    Article  PubMed  PubMed Central  Google Scholar 

  36. Setsompop K, et al. (2006) Parallel RF transmission with eight channels at 3 Tesla. Magn Reson Med 56(5):1163–1171

    Article  PubMed  Google Scholar 

  37. Park J, Mugler JP 3rd, Hughes T (2009) Reduction of B1 sensitivity in selective single-slab 3D turbo spin echo imaging with very long echo trains. Magn Reson Med 62(4):1060–1066

    Article  PubMed  Google Scholar 

  38. Beets-Tan RG, et al. (2013) Magnetic resonance imaging for the clinical management of rectal cancer patients: recommendations from the 2012 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol 23(9):2522–2531

    Article  PubMed  Google Scholar 

  39. Jemal A, et al. (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  40. Dickinson L, et al. (2011) Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 59(4):477–494

    Article  PubMed  Google Scholar 

  41. Rosenkrantz AB, et al. (2011) Prostate cancer: comparison of tumor visibility on trace diffusion-weighted images and the apparent diffusion coefficient map. AJR Am J Roentgenol 196(1):123–129

    Article  PubMed  Google Scholar 

  42. Bazot M, et al. (2013) Comparison of 3D and 2D FSE T2-weighted MRI in the diagnosis of deep pelvic endometriosis: preliminary results. Clin Radiol 68(1):47–54

    Article  PubMed  CAS  Google Scholar 

  43. Woodward PJ, Sohaey R, Mezzetti Jr TP (2001) Endometriosis: radiologic-pathologic correlation. Radiographics 21(1):193–216; questionnaire 288–94.

    Google Scholar 

  44. Giusti S, et al. (2012) Anatomical localization of deep infiltrating endometriosis: 3D MRI reconstructions. Abdom Imaging 37(6):1110–1121

    Article  PubMed  Google Scholar 

  45. Del Frate C, et al. (2006) Deep retroperitoneal pelvic endometriosis: MR imaging appearance with laparoscopic correlation. Radiographics 26(6):1705–1718

    Article  PubMed  Google Scholar 

  46. Hottat N, et al. (2009) Endometriosis: contribution of 3.0-T pelvic MR imaging in preoperative assessment—initial results. Radiology 253(1):126–134

    Article  PubMed  Google Scholar 

  47. Beddy P, et al. (2012) FIGO staging system for endometrial cancer: added benefits of MR imaging. Radiographics 32(1):241–254

    Article  PubMed  Google Scholar 

  48. Koyama T, Tamai K, Togashi K (2007) Staging of carcinoma of the uterine cervix and endometrium. Eur Radiol 17(8):2009–2019

    Article  PubMed  Google Scholar 

  49. Bhosale P, et al. (2010) Role of magnetic resonance imaging as an adjunct to clinical staging in cervical carcinoma. J Comput Assist Tomogr 34(6):855–864

    Article  PubMed  Google Scholar 

  50. Sala E, et al. (2007) MRI of malignant neoplasms of the uterine corpus and cervix. AJR Am J Roentgenol 188(6):1577–1587

    Article  PubMed  Google Scholar 

  51. Sala E, et al. (2013) The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know. Radiology 266(3):717–740

    Article  PubMed  Google Scholar 

  52. Duncan KA, et al. (2012) Staging cancer of the uterus: a national audit of MRI accuracy. Clin Radiol 67(6):523–530

    Article  PubMed  CAS  Google Scholar 

  53. Agrawal G, et al. (2009) Evaluation of uterine anomalies: 3D FRFSE cube versus standard 2D FRFSE. AJR Am J Roentgenol 193(6):W558–W562

    Article  PubMed  Google Scholar 

  54. Behr SC, Courtier JL, Qayyum A (2012) Imaging of müllerian duct anomalies. Radiographics 32(6):E233–E250

    Article  PubMed  Google Scholar 

  55. Junqueira BLP, et al. (2009) Müllerian duct anomalies and mimics in children and adolescents: correlative intraoperative assessment with clinical imaging1. Radiographics 29(4):1085–1103

    Article  PubMed  Google Scholar 

  56. Arizono S, et al. (2010) High spatial resolution 3D MR cholangiography with high sampling efficiency technique (SPACE): comparison of 3T vs. 1.5T. Eur J Radiol 73(1):114–118

    Article  PubMed  Google Scholar 

  57. Meindl T, et al. (2009) Magnetic resonance imaging of the cervical spine: comparison of 2D T2-weighted turbo spin echo, 2D T2*weighted gradient-recalled echo and 3D T2-weighted variable flip-angle turbo spin echo sequences. Eur Radiol 19(3):713–721

    Article  PubMed  CAS  Google Scholar 

  58. Griswold MA, et al. (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin K. Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, K.K., Noe, G., Hornsey, E. et al. Clinical applications of 3D T2-weighted MRI in pelvic imaging. Abdom Imaging 39, 1052–1062 (2014). https://doi.org/10.1007/s00261-014-0124-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0124-y

Keywords

Navigation