Skip to main content
Log in

Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

CalB of Pseudozyma aphidis (formerly named Candida antarctica) is one of the most widely applied enzymes in industrial biocatalysis. Here, we describe a protein with 66 % sequence identity to CalB, designated Ustilago maydis lipase 2 (Uml2), which was identified as the product of gene um01422 of the corn smut fungus U. maydis. Sequence analysis of Uml2 revealed the presence of a typical lipase catalytic triad, Ser-His-Asp with Ser125 located in a Thr-Xaa-Ser-Xaa-Gly pentapeptide. Deletion of the uml2 gene in U. maydis diminished the ability of cells to hydrolyse fatty acids from tributyrin or Tween 20/80 substrates, thus demonstrating that Uml2 functions as a lipase that may contribute to nutrition of this fungal pathogen. Uml2 was heterologously produced in Pichia pastoris and recombinant N-glycosylated Uml2 protein was purified from the culture medium. Purified Uml2 released short- and long-chain fatty acids from p-nitrophenyl esters and Tween 20/80 substrates. Furthermore, phosphatidylcholine substrates containing long-chain saturated or unsaturated fatty acids were effectively hydrolysed. Both esterase and phospholipase A activity of Uml2 depended on the Ser125 catalytic residue. These results indicate that Uml2, in contrast to CalB, exhibits not only esterase and lipase activity but also phospholipase A activity. Thus, by genome mining, we identified a novel CalB-like lipase with different substrate specificities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abousalham A, Verger R (2000) Egg yolk lipoproteins as substrates for lipases. Biochim Biophys Acta 1485:56–62

    Article  CAS  PubMed  Google Scholar 

  • Ali YB, Verger R, Abousalham A (2012) Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. Methods Mol Biol 861:31–51

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson EM, Larsson KM, Kirk O (1998) One biocatalyst—many applications: the use of Candida antarctica B-lipase in organic synthesis. Biocatal Biotransform 16:181–204

    CAS  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barbosa O, Torres R, Ortiz C, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R (2013) Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules 14:2433–2462

    Article  CAS  PubMed  Google Scholar 

  • Begerow D, Bauer R, Boekhout T (2000) Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycol Res 104:53–60

    Article  CAS  Google Scholar 

  • Bender J, Rydzewski K, Broich M, Schunder E, Heuner K, Flieger A (2009) Phospholipase PlaB of Legionella pneumophila represents a novel lipase family: protein residues essential for lipolytic activity, substrate specificity, and hemolysis. J Biol Chem 284:27185–27194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blank K, Morfill J, Gumpp H, Gaub HE (2006) Functional expression of Candida antarctica lipase B in Eschericha coli. J Biotechnol 125:474–483

    Article  CAS  PubMed  Google Scholar 

  • Blow D (1990) Enzymology. More of the catalytic triad. Nature 343:694–695

    Article  CAS  PubMed  Google Scholar 

  • Bornscheuer UT, Kazlauskas RJ (1999) Hydrolases in organic synthesis: regio- and stereoselective biotransformations, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Bovet C, Zenobi R (2008) Determination of active enzyme concentration using activity-based probes and direct mass spectrometric readout. Anal Biochem 373:380–382

    Article  CAS  PubMed  Google Scholar 

  • Brachmann A, Weinzierl G, Kamper J, Kahmann R (2001) Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42:1047–1063

    Article  CAS  PubMed  Google Scholar 

  • Brachmann A, König J, Julius C, Feldbrügge M (2004) A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genomics 272:216–226

    Article  CAS  PubMed  Google Scholar 

  • Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R (2009) Ustilago maydis as a pathogen. Annu Rev Phytopathol 47:423–445

    Article  CAS  PubMed  Google Scholar 

  • Brundiek H, Saß S, Evitt A, Kourist R, Bornscheuer UT (2012) The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity. Appl Microbiol Biotechnol 94:141–150

    Article  CAS  PubMed  Google Scholar 

  • DeLano WL (2002) PyMOL molecular graphics system. http://www.pymol.org/

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–271

    Article  CAS  PubMed  Google Scholar 

  • Eom GT, Lee SH, Song BK, Chung KW, Kim YW, Song JK (2013) High-level extracellular production and characterization of Candida antarctica lipase B in Pichia pastoris. J Biosci Bioeng 116:165-70

    Google Scholar 

  • Feldbrügge M, Kellner R, Schipper K (2013) The biotechnological use and potential of plant pathogenic smut fungi. Appl Microbiol Biotechnol 97:3253–3265

    Article  PubMed  Google Scholar 

  • Fernandez-Lorente G, Palomo JM, Guisan JM, Fernandez-Lafuente R (2007) Effect of the immobilization protocol in the activity, stability, and enantioslectivity of Lecitase® Ultra. J Mol Catal B Enzym 47:99–104

    Article  CAS  Google Scholar 

  • Fernandez-Lorente G, Cabrera Z, Godoy C, Fernandez-Lafuente R, Palomo JM, Guisan JM (2008) Interfacially activated lipases against hydrophobic supports: effect of the support nature on the biocatalytic properties. Process Biochem 43:1061–1067

    Article  CAS  Google Scholar 

  • Ferre F, Clote P (2006) DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Res 34:182–185

    Article  Google Scholar 

  • Flieger A, Rydzewski K, Banerji S, Broich M, Heuner K (2004) Cloning and characterization of the gene encoding the major cell-associated phospholipase A of Legionella pneumophila, PlaB, exhibiting hemolytic activity. Infect Immun 72:2648–2658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fojan P, Jonson PH, Petersen MT, Petersen SB (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82:1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Gaillardin C (2010) Lipases as pathogenicity factors of fungi. In: Timmis KN (ed) Handbook of hydrocarbons and lipid microbiology. Springer-Verlag Berlin, Heidelberg, pp 3260–3268

    Google Scholar 

  • Garcia-Galan C, Berenguer-Murcia A, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353:2885–2904

    Article  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  • Holliday R (1974) Ustilago maydis. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 575–595

    Google Scholar 

  • Istivan TS, Coloe PJ (2006) Phospholipase A in Gram-negative bacteria and its role in pathogenesis. Microbiology 152:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE and Kovacic F (2013) Determination of lipolytic enzyme activities. In: Filloux A, Ramos JL (eds), Methods in Pseudomonas aeruginosa. Humana Press, in press.

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  PubMed  Google Scholar 

  • Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martín J, Feldbrügge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, González-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Häuser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schlüter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Güldener U, Münsterkötter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101

    Article  PubMed  Google Scholar 

  • Katsivela E, Kleppec F, Lang S, Wagnera F (1995) Ustilago maydis lipase I. Hydrolysis and ester-synthesis activities of crude enzyme preparation. Enzym Microb Technol 17:739–745

    Article  CAS  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee CS, Oh J, Kim BG (2001) Production of egg yolk lysolecithin with immobilized phospholipase A2. Enzym Microb Technol 29:587–592

    Article  CAS  Google Scholar 

  • Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451

    Article  CAS  Google Scholar 

  • Kok RG, Christoffels VM, Vosman B, Hellingwerf KJ (1993) Growth-phase-dependent expression of the lipolytic system of Acinetobacter calcoaceticus BD413: cloning of a gene encoding one of the esterases. J Gen Microbiol 139:2329–2342

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Kumar L, Nagar S, Raina C, Parshad R, Gupta VK (2012) Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions. Arch Appl Sci Res 4:1763–1770

    CAS  Google Scholar 

  • Larsen MW, Bornscheuer UT, Hult K (2008) Expression of Candida antarctica lipase B in Pichia pastoris and various Escherichia coli systems. Protein Expr Purif 62:90–97

    Article  CAS  PubMed  Google Scholar 

  • Leščić Ašler I, Ivić N, Kovačić F, Schell S, Knorr J, Krauss U, Wilhelm S, Kojić-Prodić B, Jaeger KE (2010) Probing enzyme promiscuity of SGNH hydrolases. ChemBioChem 11:2158–2167

    Article  PubMed  Google Scholar 

  • Liu D, Schmid RD, Rusnak M (2006) Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm—a screening system for a frequently used biocatalyst. Appl Microbiol Biotechnol 72:1024–1032

    Article  CAS  PubMed  Google Scholar 

  • Luisa Rúa M, Schmidt-Dannert C, Wahl S, Sprauer A, Schmid RD (1997) Thermoalkalophilic lipase of Bacillus thermocatenulatus: large-scale production, purification and properties: aggregation behaviour and its effect on activity. J Biotechnol 56:89–102

    Article  Google Scholar 

  • Martinelle M, Holmquist M, Hult K (1995) On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim Biophys Acta 1258:272–276

    Article  PubMed  Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  • Mewes HW, Frishman D, Guldener U, Mannhaupt G, Mayer K, Mokrejs M, Morgenstern B, Munsterkotter M, Rudd S, Weil B (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30:31–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) The α/β hydrolase fold. Protein Eng 5:197–211

    Article  CAS  PubMed  Google Scholar 

  • Patkar S, Vind J, Kelstrup E, Christensen MW, Svendsen A, Borch K, Kirk O (1998) Effect of mutations in Candida antarctica B lipase. Chem Phys Lipids 93:95–101

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT, Jaeger KE (1998) Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chem Phys Lipids 93:3–14

    Article  CAS  PubMed  Google Scholar 

  • Reis P, Holmberg K, Watzke H, Leser ME, Miller R (2009) Lipases at interfaces: a review. Adv Colloid Interf Sci 147–148:237–250

    Article  Google Scholar 

  • Rogalska E, Cudrey C, Ferrato F, Verger R (1993) Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality 5:24–30

    Article  CAS  PubMed  Google Scholar 

  • Sanishvili R, Yakunin AF, Laskowski RA, Skarina T, Evdokimova E, Doherty-Kirby A, Lajoie GA, Thornton JM, Arrowsmith CH, Savchenko A, Joachimiak A (2003) Integrating structure, bioinformatics, and enzymology to discover function: BioH, a new carboxylesterase from Escherichia coli. J Biol Chem 278:26039–26045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  PubMed  Google Scholar 

  • Snijder HJ, Dijkstra BW (2000) Bacterial phospholipase A: structure and function of an integral membrane phospholipase. Biochim Biophys Acta 1488:91–101

    Article  CAS  PubMed  Google Scholar 

  • Straathof AJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  PubMed  Google Scholar 

  • Stuer W, Jaeger KE, Winkler UK (1986) Purification of extracellular lipase from Pseudomonas aeruginosa. J Bacteriol 168:1070–1074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uppenberg J, Hansen MT, Patkar S, Jones TA (1994) The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2:293–308

    Article  CAS  PubMed  Google Scholar 

  • Verger R (1997) Interfacial activation of lipases: facts and artefacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

  • Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, Feldbrügge M (2012) Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev 36:59–77

    Article  CAS  PubMed  Google Scholar 

  • Von Tigerstrom RG, Stelmaschuk L (1989) The use of Tween 20 in a sensitive turbidimetric assay of lipolytic enzymes. Can J Microbiol 35:511–514

    Article  Google Scholar 

  • Withers-Martinez C, Carriere F, Verger R, Bourgeois D, Cambillau C (1996) A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig. Structure 4:1363–1374

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Ma Y, Xue SJ, Jiang L, Shi J (2013) Characterization of immobilized phospholipase A 1 on magnetic nanoparticles for oil degumming application. Food Sci Technol 50:519–525

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partly financed by the Ministry of Innovation, Science and Research of the German state of North-Rhine Westphalia (MIWF) and the European Regional Development Fund (EFRE). We thank the Ministry of Innovation, Science and Research of North Rhine-Westphalia and Heinrich Heine University Düsseldorf for a scholarship within the CLIB2021-Graduate Cluster Industrial Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim F. Ernst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buerth, C., Kovacic, F., Stock, J. et al. Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity. Appl Microbiol Biotechnol 98, 4963–4973 (2014). https://doi.org/10.1007/s00253-013-5493-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5493-6

Keywords

Navigation