Skip to main content
Log in

Heterologous overexpression of Vigna radiata epoxide hydrolase in Escherichia coli and its catalytic performance in enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two native epoxide hydrolases (EHs) were previously discovered from mung bean powder (Vigna radiata), both of which can catalyze the enantioconvergent hydrolysis of p-nitrostyrene oxide (pNSO). In this study, the encoding gene of VrEH1 was successfully cloned from the cDNA of V. radiata by RT-PCR and rapid amplification of cDNA ends (RACE) technologies. High homologies were found to two putative EHs originated from Glycine max (80 %) and Medicago truncatula (79 %). The vreh1 gene constructed in pET28a(+) vector was then heterologously overexpressed in Escherichia coli BL21(DE3), and the encoded protein was purified to homogeneity by nickel affinity chromatography. It was shown that VrEH1 has an optimum activity at 45 °C and is very thermostable with an inactivation energy of 468 kJ mol-1. The enzyme has no apparent requirement of metal ions for activity, and its activity was strongly inhibited by 1 mM of Ni2+, Cu2+, Fe2+, or Co2+. By adding 0.1 % Triton X-100, the enzyme activity could be significantly increased up to 340 %. VrEH1 shows an unusual ability of enantioconvergent catalysis for the hydrolysis of racemic pNSO, affording (R)-p-nitrophenyl glycol (pNPG). It displays opposite regioselectivity toward (S)-pNSO (83 % to Cα) in contrast to (R)-pNSO (87 % to Cβ). The K M and k cat of VrEH1 were determined to be 1.4 mM and 0.42 s-1 for (R)-pNSO and 5.5 mM and 6.2 s-1 for (S)-pNSO. This thermostable recombinant VrEH1 with enantioconvergency is considered to be a promising biocatalyst for the highly productive preparation of enantiopure vicinal diols and also a good model for understanding the mechanism of EH stereoselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arahira M, Nong VH, Udaka K, Fukazawa C (2000) Purification, molecular cloning and ethylene-inducible expression of a soluble-type epoxide hydrolase from soybean (Glycine max[L.] Merr.). Eur J Biochem 267(9):2649–2657

    Article  CAS  PubMed  Google Scholar 

  • Arand M, Hemmer H, Dürk H, Baratti J, Archelas A, Furstoss R, Oesch F (1999) Cloning and molecular characterization of a soluble epoxide hydrolase from Aspergillus niger that is related to mammalian microsomal epoxide hydrolase. Biochem J 344(Pt 1):273–280

    Article  CAS  PubMed  Google Scholar 

  • Arand M, Cronin A, Oesch F, Mowbray SL, Jones TA (2003) The telltale structures of epoxide hydrolases. Drug Metab Rev 35(4):365–383

    Article  CAS  PubMed  Google Scholar 

  • Bala N, Chimni SS (2010) Recent developments in the asymmetric hydrolytic ring opening of epoxides catalysed by microbial epoxide hydrolase. Tetrahedron-Asymmetry 21(24):2879–2898

    Article  CAS  Google Scholar 

  • Barth S, Fischer M, Schmid RD, Pleiss J (2004) Sequence and structure of epoxide hydrolases: a systematic analysis. Proteins 55(4):846–855

    Article  CAS  PubMed  Google Scholar 

  • Blée E, Schuber F (1992) Occurrence of fatty acid epoxide hydrolases in soybean (Glycine max). Purification and characterization of the soluble form. Biochem J 282(Pt 3):711

    PubMed  Google Scholar 

  • Carlsson ÅJ, Bauer P, Ma H, Widersten M (2012) Obtaining optical purity for product diols in enzyme-catalyzed epoxide hydrolysis: contributions from changes in both enantio- and regioselectivity. Biochemistry 51(38):7627–7637

    Article  CAS  PubMed  Google Scholar 

  • Choi WJ (2009) Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl Microbiol Biotechnol 84(2):239–247

    Article  CAS  PubMed  Google Scholar 

  • Falany C, McQuiddy P, Kasper CB (1987) Structure and organization of the microsomal xenobiotic epoxide hydrolase gene. J Biol Chem 262(12):5924–5930

    CAS  PubMed  Google Scholar 

  • Gong PF, Xu JH, Tang YF, Wu HY (2003) Improved catalytic performance of Bacillus megaterium epoxide hydrolase in a medium containing Tween-80. Biotechnol Prog 19(2):652–654

    Article  CAS  PubMed  Google Scholar 

  • Guo A, Durner J, Klessig DF (1998) Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV. Plant J 15(5):647–656

    Article  CAS  PubMed  Google Scholar 

  • Hwang S, Choi CY, Lee EY (2008) Enantioconvergent bioconversion of p-chlorostyrene oxide to (R)-p-chlorophenyl-1,2-ethandiol by the bacterial epoxide hydrolase of Caulobacter crescentus. Biotechnol Lett 30(7):1219–1225

    Article  CAS  PubMed  Google Scholar 

  • Hwang S, Choi CY, Lee EY (2010) Bio- and chemo-catalytic preparations of chiral epoxides. J Ind Eng Chem 16(1):1–6

    Article  CAS  Google Scholar 

  • Ju X, Pan J, Xu JH (2008) Enantioconvergent hydrolysis of p-nitrostyrene epoxides by mung bean epoxide hydrolases. Chin J Catal 29:696–700

    Article  CAS  Google Scholar 

  • Karboune S, Archelas A, Furstoss R, Baratti JC (2005) Immobilization of the Solanum tuberosum epoxide hydrolase and its application in an enantioconvergent process. Biocatal Biotransform 23(6):397–405

    Article  CAS  Google Scholar 

  • Kim HS, Lee JH, Park S, Lee EY (2004) Biocatalytic preparation of chiral epichlorohydrins using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis. Biotechnol Bioprocess Eng 9(1):62–64

    Article  CAS  Google Scholar 

  • Kim HS, Lee SJ, Lee EJ, Hwang JW, Park S, Kim SJ, Lee EY (2005) Cloning and characterization of a fish microsomal epoxide hydrolase of Danio rerio and application to kinetic resolution of racemic styrene oxide. J Mol Catal B Enzym 37(1–6):30–35

    Article  CAS  Google Scholar 

  • Kim H, Lee O, Hwang S, Kim B, Lee EY (2008) Biosynthesis of (R)-phenyl-1,2-ethanediol from racemic styrene oxide by using bacterial and marine fish epoxide hydrolases. Biotechnol Lett 30(1):127–133

    Article  CAS  PubMed  Google Scholar 

  • Kotik M, Stepánek V, Kyslik P, Maresova H (2007) Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering. J Biotechnol 132(1):8–15

    Article  CAS  PubMed  Google Scholar 

  • Kotik M, Stepánek V, Grulich M, Kyslik P, Archelas A (2010) Access to enantiopure aromatic epoxides and diols using epoxide hydrolases derived from total biofilter DNA. J Mol Catal B Enzym 65(1):41–48

    Article  CAS  Google Scholar 

  • Kronenburga NAE, de Bont JAM (2001) Effects of detergents on specific activity and enantioselectivity of the epoxide hydrolase from Rhodotorula glutinis. Enzyme Microb Technol 28(2):210–217

    Article  PubMed  Google Scholar 

  • Kroutil W, Mischitz M, Plachota P, Faber K (1996) Deracemization of (±)-cis-2,3-epoxyheptane via enantioconvergent biocatalytic hydrolysis using Nocardia EH1-epoxide hydrolase. Tetrahedron Lett 37(46):8379–8382

    Article  CAS  Google Scholar 

  • Lee EY, Shuler ML (2007) Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis. Biotechnol Bioeng 98(2):318–327

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Kim HS, Kim SJ, Park S, Kim BJ, Shuler ML, Lee EY (2006) Cloning, expression and enantioselective hydrolytic catalysis of a microsomal epoxide hydrolase from a marine fish, Mugil cephalus. Biotechnol Lett 29(2):237–246

    Article  PubMed  Google Scholar 

  • Liu Z, Li Y, Xu Y, Ping L, Zheng YG (2006) Cloning, sequencing, and expression of a novel epoxide hydrolase gene from Rhodococcus opacus in Escherichia coli and characterization of enzyme. Appl Microbiol Biotechnol 74(1):99–106

    Article  PubMed  Google Scholar 

  • Liu Y, Wu S, Wang J, Yang L, Sun W (2007) Cloning, expression, purification, and characterization of a novel epoxide hydrolase from Aspergillus niger SQ-6. Protein Expr Purif 53(2):239–246

    Article  CAS  PubMed  Google Scholar 

  • Marcozzi G, Di Domenico C, Spreti N (1998) Effects of surfactants on the stabilization of the bovine lactoperoxidase activity. Biotechnol Prog 14(4):653–656

    Article  CAS  PubMed  Google Scholar 

  • Meijer J, Depierre JW (1988) Cytosolic epoxide hydrolase. Chem Biol Interact 64(3):207–249

    Article  CAS  PubMed  Google Scholar 

  • Monterde MI, Lombard M, Archelas A, Cronin A, Arand M, Furstoss R (2004) Enzymatic transformations. Part 58: enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase. Tetrahedron-Asymmetry 15(18):2801–2805

    Article  CAS  Google Scholar 

  • Morisseau C, Beetham JK, Pinot F, Debernard S, Newman JW, Hammock BD (2000) Cress and potato soluble epoxide hydrolases: hurification, biochemical characterization, and comparison to mammalian enzymes. Arch Biochem Biophys 378(2):321–332

    Article  CAS  PubMed  Google Scholar 

  • Moussou P, Archelas A, Baratti J, Furstoss R (1998) Microbiological transformations. Part 39: determination of the regioselectivity occurring during oxirane ring opening by epoxide hydrolases: a theoretical analysis and a new method for its determination. Tetrahedron-Asymmetry 9(9):1539–1547

    Article  CAS  Google Scholar 

  • Nardini M, Ridder IS, Rozeboom HJ, Kalk KH, Rink R, Janssen DB, Dijkstra BW (1999) The X-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1—an enzyme to detoxify harmful epoxides. J Biol Chem 274(21):14579–14586

    Article  CAS  PubMed  Google Scholar 

  • Nellaiah H, Morisseau C, Archelas A, Furstoss R, Baratti JC (1996) Enantioselective hydrolysis of p-nitrostyrene oxide by an epoxide hydrolase preparation from Aspergillus niger. Biotechnol Bioeng 49(1):70–77

    Article  CAS  PubMed  Google Scholar 

  • Newman JW, Morisseau C, Hammock BD (2005) Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 44(1):1–51

    Article  CAS  PubMed  Google Scholar 

  • Orru R, Archelas A, Furstoss R, Faber K (1999) Epoxide hydrolases and their synthetic applications. Adv Biochem Eng Biotechnol 63:145–167

    CAS  PubMed  Google Scholar 

  • Rink R, Janssen DB (1998) Kinetic mechanism of the enantioselective conversion of styrene oxide by epoxide hydrolase from Agrobacterium radiobacter AD1. Biochemistry 37(51):18119–18127

    Article  CAS  PubMed  Google Scholar 

  • Rink R, Kingma J, Lutje Spelberg JH, Janssen DB (2000) Tyrosine residues serve as proton donor in the catalytic mechanism of epoxide hydrolase from Agrobacterium radiobacter. Biochemistry 39(18):5600–5613

    Article  CAS  PubMed  Google Scholar 

  • Stapleton A, Beetham JK, Pinot F, Garbarino JE, Rockhold DR, Friedman M, Hammock BD, Belknap WR (1994) Cloning and expression of soluble epoxide hydrolase from potato. Plant J 6(2):251–258

    Article  CAS  PubMed  Google Scholar 

  • Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. PNAS 99(26):16899–16903

    Article  PubMed  Google Scholar 

  • Visser H, De Bont JAM, Verdoes JC (1999) Isolation and characterization of the epoxide hydrolase-encoding gene from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 65(12):5459–5463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Visser H, Vreugdenhil S, de Bont JAM, Verdoes JC (2000) Cloning and characterization of an epoxide hydrolase-encoding gene from Rhodotorula glutinis. Appl Microbiol Biotechnol 53(4):415–419

    Article  CAS  PubMed  Google Scholar 

  • Widersten M, Elfström LT (2005) Catalysis of potato epoxide hydrolase, StEH1. Biochem J 390(2):633–640

    Article  PubMed  Google Scholar 

  • Widersten M, Gurell A, Lindberg D (2010) Structure–function relationships of epoxide hydrolases and their potential use in biocatalysis. Biochim Biophys Acta 1800(3):316–326

    Article  CAS  PubMed  Google Scholar 

  • Wijekoon CP, Goodwin PH, Hsiang T (2008) The involvement of two epoxide hydrolase genes, NbEH1.1 and NbEH1.2, of Nicotiana benthamiana in the interaction with Colletotrichum destructivum, Colletotrichum orbiculare or Pseudomonas syringae pv. tabaci.t. Funct Plant Biol 35(11):1112–1122

    Article  CAS  Google Scholar 

  • Woo JH, Kang JH, Hwang YO, Cho JC, Kim SJ, Kang SG (2010) Biocatalytic resolution of glycidyl phenyl ether using a novel epoxide hydrolase from a marine bacterium, Rhodobacterales bacterium HTCC2654. J Biosci Bioeng 109(6):539–544

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Xu JH, Pan J, Gu Q, Wu XY (2006) Enantioconvergent hydrolysis of styrene epoxides by newly discovered epoxide hydrolases in mung bean. Org Lett 8(8):1737–1740

    Article  CAS  PubMed  Google Scholar 

  • Yamada T (2000) Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase. J Biol Chem 275(30):23082–23088

    Article  CAS  PubMed  Google Scholar 

  • Yoo SS, Park S, Lee EY (2008) Enantioselective resolution of racemic styrene oxide at high concentration using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis in the presence of surfactant and glycerol. Biotechnol Lett 30(10):1807–1810

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Chu YY, Li AT, Ju X, Kong XD, Pan J, Tang Y, Xu JH (2011) An unusual (R)-selective epoxide hydrolase with high activity for facile preparation of enantiopure glycidyl ethers. Adv Synth Catal 353(9):1510–151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21276082 and 81071252), Ministry of Science and Technology, People's Republic of China (Nos. 2011CB710800 and 2011AA02A210), and China National Special Fund for State Key Laboratory of Bioreactor Engineering (No. 2060204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Qiang Fan or Jian-He Xu.

Additional information

Qing-Qing Zhu and Wan-Hong He contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, QQ., He, WH., Kong, XD. et al. Heterologous overexpression of Vigna radiata epoxide hydrolase in Escherichia coli and its catalytic performance in enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol. Appl Microbiol Biotechnol 98, 207–218 (2014). https://doi.org/10.1007/s00253-013-4845-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4845-6

Keywords

Navigation