Skip to main content

Advertisement

Log in

Metallomics: lessons for metalliferous soil remediation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The term metallomics has been established for the investigation of transcriptome, proteome, and metabolome changes induced by metals. The mechanisms allowing the organisms to cope with metals in the environment, metal resistance factors, will in turn change biogeochemical cycles of metals in soil, coupling the metal pool with the root system of plants. This makes microorganisms key players in introducing metals into food webs, as well as for bioremediation strategies. Research on physiological and metabolic responses of microorganisms on metal stress in soil is thus essential for the selection of optimized consortia applicable in bioremediation strategies such as bioaugmentation or microbially enhanced phytoextraction. The results of metallomics studies will help to develop applications including identification of biomarkers for ecotoxicological studies, bioleaching, in situ soil regeneration, and microbially assisted phytoremediation of contaminated land. This review will therefore focus on the molecular understanding of metal resistance in bacteria and fungi, as can be derived from metallomics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams P, Lynch JM, De Leij FA (2007) Desorption of zinc by extracellularly produced metabolites of Trichoderma harzianum, Trichoderma reesei and Coriolus versicolor. J Appl Microbiol 103:2240–2247

    Article  CAS  Google Scholar 

  • Adeyemi AO, Gadd GM (2005) Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18:269–281

    Article  CAS  Google Scholar 

  • Albarracín VH, Winik B, Kothe E, Amoroso MJ, Abate CM (2008) Copper bioaccumulation by the actinobacterium Amycolatopsis sp. AB0. J Basic Microbiol 48:323–330

    Article  Google Scholar 

  • Alkorta I, Epelde L, Mijangos I, Amezaga I, Garbisu C (2006) Bioluminescent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils. Rev Environ Health 21:139–152

    CAS  Google Scholar 

  • Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microbiol 40:295–301

    Article  CAS  Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ Pollut 147:609–614

    Article  CAS  Google Scholar 

  • Beauséjour J, Beaulieu C (2004) Characterization of Streptomyces scabies mutants deficient in melanin biosynthesis. Can J Microbiol 50:705–709

    Article  Google Scholar 

  • Behl RK, Ruppel S, Kothe E, Narula N (2007) Wheat × Azotobacter × VA Mycorrhiza interactions towards plant nutrition and growth. J Appl Bot 81:95–109

    CAS  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. BioMetals 15:325–339

    Article  CAS  Google Scholar 

  • Bourdineaud JP, Baudrimont M, Gonzalez P, Moreau JL (2006) Challenging the model for induction of metallothionein gene expression. Biochimie 88:1787–1792

    Article  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  Google Scholar 

  • Chance MR, Fiser A, Sali A, Pieper U, Eswar N, Xu G, Fajardo JE, Radhakannan T, Marinkovic N (2004) High-throughput computational and experimental techniques in structural genomics. Genome Res 14:2145–2154

    Article  CAS  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  CAS  Google Scholar 

  • Culotta VC, Joh HD, Lin SJ, Slekar KH, Strain J (1995) A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem 270:29991–29997

    Article  CAS  Google Scholar 

  • Cunningham SD, Shann JR, Crowley D, Anderson TA (1997) Phytoremediation of contaminated water and soil. In: Krueger EL, Anderson TA, Coats JP (eds) Phytoremediation of soil and water contaminants. ACS, Washington, pp 2–17

    Chapter  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  CAS  Google Scholar 

  • Dickinson RE, Cicerone RJ (1986) Future global warming from atmospheric trace gases. Nature 319:109–115

    Article  CAS  Google Scholar 

  • Diels L, Van Roy S, Taghavi S, Van Houdt R (2009) From industrial sites to environmental applications with Cupriavidus metallidurans. Antonie Van Leeuwenhoek 96:247–258

    Article  Google Scholar 

  • Diesel E, Schreiber M, van der Meer JR (2009) Development of bacteria-based bioassays for arsenic detection in natural waters. Anal Bioanal Chem 394:687–693

    Article  CAS  Google Scholar 

  • Dimkpa C, Svatos A, Merten D, Büchel G, Kothe E (2008a) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  Google Scholar 

  • Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008b) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  Google Scholar 

  • Dudka S, Adriano DC (1997) Environmental impacts of metal ore mining and processing: a review. J Environ Qual 26:590–602

    Article  CAS  Google Scholar 

  • Fomina M, Gadd GM (2003) Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. J Chem Technol Biotechnol 78:23–34

    Article  CAS  Google Scholar 

  • Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM (2005) Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl Environ Microbiol 71:371–381

    Article  CAS  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  Google Scholar 

  • Furrer G, Phillips BL, Ulrich KU, Pöthig R, Casey WH (2002) The origin of aluminum flocs in polluted streams. Science 297:2245–2247

    Article  CAS  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  Google Scholar 

  • Gadd GM (2009) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  Google Scholar 

  • Garcia JS, Magalhães CS, Arruda MA (2006) Trends in metal-binding and metalloprotein analysis. Talanta 69:1–15

    Article  CAS  Google Scholar 

  • Geslin C, Llanos J, Prieur D, Jeanthon C (2001) The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microbiol 152:901–905

    Article  CAS  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  Google Scholar 

  • Goldsbrough P, Cobbett C (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  Google Scholar 

  • González-Fernández M, García-Barrera T, Arias-Borrego A, Jurado J, Pueyo C, López-Barea J, Gómez-Ariza JL (2009) Metallomics integrated with proteomics in deciphering metal-related environmental issues. Biochimie 91:1311–1317

    Article  Google Scholar 

  • Grande JA, Beltrán R, Sáinz A, Santos JC, de la Torre ML, Borrego J (2005) Acid mine drainage and acid rock drainage processes in the environment of Herrerías Mine (Iberian Pyrite Belt, Huelva-Spain) and impact on the Andevalo Dam. Environ Geol 47:185–196

    Article  CAS  Google Scholar 

  • Gutiérrez JC, Amaro F, Martín-González A (2009) From heavy metal-binders to biosensors: ciliate metallothioneins discussed. Bioessays 31:805–816

    Article  Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    Article  CAS  Google Scholar 

  • Haferburg G, Merten D, Büchel G, Kothe E (2007) Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage. J Basic Microbiol 47:474–484

    Article  CAS  Google Scholar 

  • Haferburg G, Kloess G, Schmitz W, Kothe E (2008) “Ni-struvite”—a new biomineral formed by a nickel resistant Streptomyces acidiscabies. Chemosphere 72:517–523

    Article  CAS  Google Scholar 

  • Haferburg G, Groth I, Möllmann U, Kothe E, Sattler I (2009) Arousing sleeping genes: shifts in secondary metabolism of metal tolerant actinobacteria under conditions of heavy metal stress. Biometals 22:225–234

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  Google Scholar 

  • Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. J Biosci Bioeng 100:593–599

    Article  CAS  Google Scholar 

  • Iordache V, Gherghel F, Kothe E (2009) Assessing the effect of disturbances on ectomycorrhiza diversity. Int J Environ Res Public Health 6:414–432

    Article  Google Scholar 

  • Jiang K, Sun TH, Sun LN, Li HB (2006) Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline. J Environ Sci 18:1221–1225

    Article  CAS  Google Scholar 

  • Keller C, Ludwig C, Davoli F, Wochele J (2005) Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environ Sci Technol 39:3359–3367

    Article  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation—an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7:503–514

    Article  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    Article  CAS  Google Scholar 

  • Liang CC, Li T, Xiao YP, Liu MJ, Zhang HB, Zhao ZW (2009a) Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Int J Phytorem 11:692–703

    Article  CAS  Google Scholar 

  • Liang HM, Lin TH, Chiou JM, Yeh KC (2009b) Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environ Pollut 157:1945–1952

    Article  CAS  Google Scholar 

  • Lobinski R, Moulin C, Ortega R (2006) Imaging and speciation of trace elements in biological environment. Biochimie 88:1591–1604

    Article  CAS  Google Scholar 

  • López-Barea J, Gómez-Ariza JL (2006) Environmental proteomics and metallomics. Proteomics Suppl 1:51–62

    Article  Google Scholar 

  • Magyarosy A, Laidlaw RD, Kilaas R, Echer C, Clark DS, Keasling JD (2002) Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl Microbiol Biotechnol 59:382–388

    Article  CAS  Google Scholar 

  • Mellano MA, Cooksey DA (1988) Induction of the copper resistance operon from Pseudomonas syringae. J Bacteriol 170:4399–4401

    CAS  Google Scholar 

  • Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38:1119–1138

    Article  CAS  Google Scholar 

  • Muñoz AH, Kubachka K, Wrobel K, Corona FG, Yathavakilla SK, Caruso JA, Wrobel K (2005) Metallomics approach to trace element analysis in Ustilago maydis using cellular fractionation, atomic absorption spectrometry, and size exclusion chromatography with ICP-MS detection. J Agric Food Chem 53:5138–5143

    Article  Google Scholar 

  • Narula N, Kothe E, Behl RK (2009) Role of root exudates in plant–microbe interactions. J Appl Bot Food Qual 82:122–130

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nriagu JA (1996) A history of global metal pollution. Science 272:223–224

    Article  CAS  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    Article  CAS  Google Scholar 

  • Pan R, Cao L, Zhang R (2009) Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19. J Hazard Mater 171:761–766

    Article  CAS  Google Scholar 

  • Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32:265–268

    Article  CAS  Google Scholar 

  • Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66:151–210

    Article  CAS  Google Scholar 

  • Poynton HC, Varshavsky JR, Chang B, Cavigiolio G, Chan S, Holman PS, Loguinov AV, Bauer DJ, Komachi K, Theil EC, Perkins EJ, Hughes O, Vulpe CD (2007) Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol 41:1044–1050

    Article  CAS  Google Scholar 

  • Prasad MN, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    Article  CAS  Google Scholar 

  • Robinson NJ, Whitehall SK, Cavet JS (2001) Microbial metallothioneins. Adv Microb Physiol 44:183–213

    Article  CAS  Google Scholar 

  • Sayer JA, Kierans M, Gadd GM (1997) Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiol Lett 154:29–35

    Article  CAS  Google Scholar 

  • Schachtschabel P, Blume HP, Brümmer G, Hartge KH, Schwertmann U (1998) Lehrbuch der Bodenkunde. Enke, Stuttgart

    Google Scholar 

  • Schmidt A, Schmidt A, Haferburg G, Kothe E (2007) Superoxide dismutases of heavy metal resistant streptomycetes. J Basic Microbiol 47:56–62

    Article  CAS  Google Scholar 

  • Schmidt A, Gube M, Schmidt A, Kothe E (2009) In silico analysis of nickel containing superoxide dismutase evolution and regulation. J Basic Microbiol 49:109–118

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  Google Scholar 

  • Shen H, Christie P, Li X (2006) Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environ Geochem Health 28:111–119

    Article  CAS  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions—a review. Gene 179:9–19

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metals resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  Google Scholar 

  • Siñeriz ML, Kothe E, Abate CM (2009) Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J Basic Microbiol 49(Suppl1):S55–S62

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Sobolev D, Begonia MF (2008) Effects of heavy metal contamination upon soil microbes: lead induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5:450–456

    Article  CAS  Google Scholar 

  • Sprocati AR, Alisi C, Segre L, Tasso F, Galletti M, Cremisini C (2006) Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. Sci Total Environ 366:649–658

    Article  CAS  Google Scholar 

  • Szpunar J (2004) Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem 378:54–56

    Article  CAS  Google Scholar 

  • Szpunar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 30:442–465

    Article  Google Scholar 

  • Tchize Ndejouong BLS, Sattler I, Dahse HM, Kothe E, Hertweck C (2009) Isoflavones with unusually modified b-rings and their evaluation as antiproliferative agents. Bioorg Med Chem Lett 19:6473–6476

    Article  CAS  Google Scholar 

  • Ulrich B, Benzler JH (1955) Der organisch gebundene Phosphor im Boden. Z Pflanzenernähr Düng Bodenk 70:220

    Article  CAS  Google Scholar 

  • Vielle-Calzada JP, Martínez de la Vega O, Hernández-Guzmán G, Ibarra-Laclette E, Alvarez-Mejía C, Vega-Arreguín JC, Jiménez-Moraila B, Fernández-Cortés A, Corona-Armenta G, Herrera-Estrella L, Herrera-Estrella A (2009) The Palomero genome suggests metal effects on domestication. Science 326:1078

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Virta M, Tauriainen S, Karp M (1998) Bioluminescence-based metal detectors. Methods Mol Biol 102:219–229

    CAS  Google Scholar 

  • Vivas A, Moreno B, del Val C, Macci C, Masciandaro G, Benitez E (2008) Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. J Environ Monit 10:1287–1296

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007a) Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens—a field case. Environ Pollut 147:248–255

    Article  CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007b) Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Int J Phytorem 9:345–353

    Article  Google Scholar 

  • Wengel M, Kothe E, Schmidt CM, Heide K, Gleixner G (2006) Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Sci Total Environ 367:383–393

    Article  CAS  Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516

    Article  CAS  Google Scholar 

  • Zeien H, Brümmer GW (1989) Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Böden. Mitt Dtsch Bodenkd Ges 59:505–510

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the EU for the funding (UMBRELLA) and the DFG for the support through GRK1257 and GSC214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Götz Haferburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haferburg, G., Kothe, E. Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87, 1271–1280 (2010). https://doi.org/10.1007/s00253-010-2695-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2695-z

Keywords

Navigation