Skip to main content

Advertisement

Log in

From industrial sites to environmental applications with Cupriavidus metallidurans

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Cupriavidus metallidurans CH34 and related strains are adapted to metal contaminated environments. A strong resistance to environmental stressors and adaptation make it ideal strains for survival in decreasing biodiversity conditions and for bioaugmentation purposes in environmental applications. The soil bacterium C. metallidurans is able to grow chemolithoautotrophically on hydrogen and carbon dioxide allowing a strong resilience under conditions lacking organic matter. The biofilm growth on soil particles allows coping with starvation or bad conditions of pH, temperature and pollutants. Its genomic capacity of two megaplasmids encoding several heavy metal resistance operons allowed growth in heavy metal contaminated habitats. In addition its specific siderophores seem to play a role in heavy metal sequestration besides their role in the management of bioavailable iron. Efflux ATPases and RND systems pump the metal cations to the membrane surface where polysaccharides serve as heavy metal binding and nucleation sites for crystallisation of metal carbonates. These polysaccharides contribute also to flotation under specific conditions in a soil-heavy metals–bacteria suspension mixture. An inoculated moving bed sand filter was constructed to treat heavy metal contaminated water and to remove the metals in the form of biomass mixed with metal carbonates. A membrane based contactor allowed to use the bacteria as well in a versatile wastewater treatment system and to grow homogeneously formed heavy metal carbonates. Its behaviour toward heavy metal binding and flotation was combined in a biometal sludge reactor to extract and separate heavy metals from metal contaminated soils. Finally its metal-induced heavy metal resistance allowed constructing whole cell heavy metal biosensors which, after contact with contaminated soil, waste, solids, minerals and ashes, were induced in function of the bioavailable concentration (Cd, Zn, Cu, Cr, Co, Ni, Tl, Pb and Hg) in the solids and allowed to investigate the speciation of immobilization of those metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CDM:

Cellular dry matter

RND:

Metal resistance, nodulation and cell division

MERESAFIN:

Metal removal by sand filter inoculation

BICMER:

Bacteria immobilized composite membrane reactor

TCE:

3-Chlorobenzoate, trichloroethylene

PAH:

Polyaromatic hydrocarbons

Cop D:

Copper resistance protein D

References

  • Bulich AA, Isenberg DL (1981) Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity. ISA Trans 20:29–33

    PubMed  CAS  Google Scholar 

  • Coenye T, Spilker T, Reik R, Vandamme P, Lipuma JJ (2005) Use of PCR analyses to define the distribution of Ralstonia species recovered from patients with cystic fibrosis. J Clin Microbiol 43:3463–3466

    Article  PubMed  CAS  Google Scholar 

  • Collard JM, Corbisier P, Diels L, Dong Q, Jeanthon C, Mergeay M, Taghavi S, van der Lelie D, Wilmotte A, Wuertz S (1994) Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: mechanisms and applications. FEMS Microbiol Rev 14:405–414

    Article  PubMed  CAS  Google Scholar 

  • Corbisier P, Thiry E, Diels L (1996) Bacterial biosensors for the toxicity assessment of solid wastes. Environ Tox Water Qual 11:171–177

    Article  CAS  Google Scholar 

  • Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csöregi E, Johansson G, Mattiason B (1999) Whole cell-protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Clin Acta 387:235–244

    Article  CAS  Google Scholar 

  • Corbisier P, Diels L, Illangasekare T, Reible D, Reinhard M, Vangronsveld J (2002) Mobility and availability of contaminants. In: Reible D, Demnerova K (eds) Innovative appraoches to the on-site assessment, remediation of contaminated sites. Kluwer, The Netherlands, pp 31–65

    Google Scholar 

  • Diels L (1997) Heavy metal bioremediation of soil. In: Sheehan D (ed) Methods in biotechnology, vol 2: bioremediation protocols. Humana press, Totowa, pp 283–295

    Google Scholar 

  • Diels L, Mergeay M (1990) DNA probe mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 56:1485–1491

    PubMed  CAS  Google Scholar 

  • Diels L, Sadouk A, Mergeay M (1989) Large plasmids governing multiple resistances to heavy metals: a genetic approach. Toxicol Environ Chem 23:79–89

    Article  CAS  Google Scholar 

  • Diels L, Carpels M, Geuzens P, Mergeay M, Rymen T (1992) Method and device for cleaning soil polluted by at least one heavy metal. European Patent 92,203,049.9

  • Diels L, Van Roy S, Mergeay M, Doyen W, Taghavi S, Leysen R (1993) Immobilization of bacteria in composite membranes and development of tubular membrane reactors for heavy metal recuperation. In Third international conference on effective membrane processes—New perspectives, Paterson R (ed), BHR Group Conference Series, Publication no. 3, 275–293

  • Diels L, Dong Q, van der Lelie D, Baeyens W, Mergeay M (1995a) The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J Industr Microbiol 124:142–153

    Article  Google Scholar 

  • Diels L, Van Roy S, Somers K, Willems I, Doyen W, Mergeay M, Springael D, Leysen R (1995b) The use of bacteria immobilized in tubular membrane reactors for heavy metal recovery and degradation of chlorinated aromatics. J Memb Sci 100:249–258

    Article  CAS  Google Scholar 

  • Diels L, Van Roy S, Dong Q, Dresselaers T, Hennen A, Ryngaert A, Peys K, Springael D (1996a) Molecular approaches in biofilm studies of membrane reactors. Med Fac Landbouww Univ Gent 61/4b:1917–1924

    Google Scholar 

  • Diels L, Van Roy S, Leysen R, Mergeay M (1996b) Heavy metal bioprecipitation by Alcaligenes Eutrophus CH34 immobilized in a membrane bioreactor. Intern Biodet Biodegr 37:239

    Article  Google Scholar 

  • Diels L, De Smet M, Hooyberghs L, Corbisier P (1999) Heavy metals bioremediation of soil. Molec Biotech 12:149–158

    Article  CAS  Google Scholar 

  • Diels L, Spaans PH, Van Roy S, Hooyberghs L, Wouters H, Walter E, Winters J, Macaskie L, Finlay J, Pernfuss B, Woebking H, Pümpel T (2003) Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy 71:235–241

    Article  Google Scholar 

  • Dong Q, Mergeay M (1994) Czc/cnr efflux: a three-component chemiosmotic antiport pathway with a 12-transmembrane-helix protein. Mol Microbiol 14:185–187

    Article  PubMed  CAS  Google Scholar 

  • Gilis A, Khan AM, Cornelis P, Meyer JM, Mergeay M, van der Lelie D (1996) Siderophore-mediated iron uptake in Alcaligenes eutrophus CH34 and identification of aleB encoding the ferric-alcaligin E receptor. J Bacteriol 178:5499–5507

    PubMed  CAS  Google Scholar 

  • Höfte M, Dong Q, Kourambos S, Krishnapillai V, Sherratt D, Mergeay M (1994) The sss gene product, which affects pyoverdin production in Pseudomonas aeruginosa 7NSK2, is a site-specific recombinase. Mol Microbiol 14:1011–1020

    Article  PubMed  Google Scholar 

  • Kefala MI, Zouboulis AI, Matis KA (1999) Biosorption of cadmium ions by Actinomycetes and separation by flotation. Environ Pollut 104:283–293

    Article  CAS  Google Scholar 

  • Leysen R, Doyen W(1987) European patent specification for Zirfon membranes. EP0241995 (B1)

  • Liu YG, Huang N (1998) Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant Mol Biol Rep 16:175–181

    Article  CAS  Google Scholar 

  • Magrisso S, Erel Y, Belkin S (2008) Microbial reporters of metal bioavailability. Microb Biotechnol 1:320–330

    Article  CAS  Google Scholar 

  • Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol 9:17–24

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M (2000) Bacteria adapted to industrial biotopes: the metal resistant Ralstonia. In: GSaR Hengge-Aronis (ed) Bacterial stress responses. ASM Press, Washington D.C., pp 403–414

    Google Scholar 

  • Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistances to Cd++, Zn++, and Co++ ions: evidence from curing in a Pseudomonas. Arch Intern Physiol Bioch 86:440–441

    CAS  Google Scholar 

  • Mergeay M, Nies D, Schlegel G, Gerits J, Van Gijsegem F (1985) Alcaligenes eutrophus CH34, a facultative chemolithotroph displaying plasmid bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Mergeay M, Sadouk A, Diels L, Faelen M, Gerits J, Denecke J, Powell B (1987) High level spontaneous mutagenesis revealed by survival at non-optimal temperature in Alcaligenes eutrophus CH34. Arch Inter Physiol Bioch 95:35–36

    Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microb Rev 27:385–410

    Article  CAS  Google Scholar 

  • Mergeay M, Monchy S, Janssen P, Van Houdt R, Leys N (2009) Megaplasmids in Cupriavidus genus and metal resistance. In: Schwartz E (ed) Microbial megaplasmids. Springer, Berlin, p 320 ISBN: 978-3-540-85466-1

    Google Scholar 

  • Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M, Taghavi S, van der Lelie D, Vallaeys T (2006) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776

    Article  PubMed  CAS  Google Scholar 

  • Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425

    Article  PubMed  CAS  Google Scholar 

  • Peys K, Diels L, Leysen R, Vandecasteele C (1997) Development of a membrane biofilm reactor for the degradation of chlorinated aromatics. Water Sci Tech 36:205–214

    Article  CAS  Google Scholar 

  • Podda F, Zuddas P, Minacci A, Pepi M, Baldi F (2000) Heavy metal co-precipitation with hydrozincite [Zn(5)(CO(3))(2)(OH)(6)] from mine waters caused by photosynthetic microorganisms. Appl Environ Microbiol 11:5092–5098

    Article  Google Scholar 

  • Pümpel T, Ebner C, Pernfuss B, Schinner F, Diels L, Keszthelyi Z, Macaskie L, Tsezos M, Wouters H (2001) Removal of nickel from plating rinsing water by a moving-bed sandfilter inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy 59:383–393

    Article  Google Scholar 

  • Ruttens A, Mench M, Colpaert JV, Boisson J, Carleer R, Vangronsveld K (2006) Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Poll 144:524–532

    Article  CAS  Google Scholar 

  • Saier MH, Tam R, Reizer A, Reizer J (1994) Two novel families of bacterial membrane proteins concerned nodulation, cell division and transport. Mol Microbiol 11:841–847

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Nishihara H, Yoshida M, Watanabe M, Rondal JD, Concepcion RN, Ohta H (2006) Cupriavidus pinatubonensis sp. nov. and Cupriavidus laharis sp. nov., novel hydrogen-oxidizing, facultatively chemolithotrophic bacteria isolated from volcanic mudflow deposits from Mt. Pinatubo in the Philippines. Int J Syst Evol Microbiol 56:973–978

    Article  PubMed  CAS  Google Scholar 

  • Schultze-Lam S, Harauz G, Beveridge TS (1992) Participation of cyanobacterial S layer in fine grain mineral formation. J Bacteriol 174:7971–7981

    PubMed  CAS  Google Scholar 

  • Shaw JJ, Settles LG, Kado CI (1988) Transposon Tn4431 mutagenesis of Xanthomonas campestris pv Campestris. Characterisation of a non-pathogenic mutant and cloning of a locus for pathogenicity. Mol Plant–Microbe Interact 1:39–45

    Google Scholar 

  • Springael D, Peys K, Ryngaert A, Van Roy S, Hooyberghs L, Ravatn R, Heyndrickx M, van der Meer JR, Vandecasteele C, Mergeay M, Diels L (2002) Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor: indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria. Environ Microbiol 4:70–80

    Article  PubMed  CAS  Google Scholar 

  • Tesseir A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–850

    Article  Google Scholar 

  • Tibazarwa C, Wuerz S, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26

    Article  PubMed  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) A biological test system for the evaluation of the phytotoxicity of metal contaminated soils. Environ Pollut 66:157–172

    Article  PubMed  Google Scholar 

  • Van der Lelie D, Verschaeve L, Regniers L, Corbisier P (2000) Use of bacterial tests (the VITOTOX (R) genotoxicity test and the BIOMET heavy metal test) to analyze chemicals and environmental samples. In: Personne G, Janssen C (eds) New microbiotests for routine toxicity screening and biomonitoring. Kluwer Academic Publishers, New York, pp 197–207

    Google Scholar 

  • Volesky B (2003) Biosorption process simulation tools. Hydrometallurgy 71:179−190

    Article  CAS  Google Scholar 

  • Woebking H, Diels L (2000) Abreicherung und Rückgewinnung von Eisen and Nichteisenmetallen aus industriellen Abwässeren unter Verwendung eines Bakterien geimpften Sandfilters. Berg- and Hüttenmännische Monatshefte 7:265–270

    Google Scholar 

  • Wuertz S, Mergeay M (1997) The impact of heavy metals on soil microbial communities and their activities. In: van Elsas D, Wellington E, Trevors J (eds) Modern soil microbiology. Marcel Dekker Publisher, New York, pp 607–642

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludo Diels.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diels, L., Van Roy, S., Taghavi, S. et al. From industrial sites to environmental applications with Cupriavidus metallidurans . Antonie van Leeuwenhoek 96, 247–258 (2009). https://doi.org/10.1007/s10482-009-9361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9361-4

Keywords

Navigation