Skip to main content

Advertisement

Log in

Challenges in microbial fuel cell development and operation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A microbial fuel cell (MFC) is a device that converts chemical energy into electricity through the catalytic activities of microorganisms. Although there is great potential of MFCs as an alternative energy source, novel wastewater treatment process, and biosensor for oxygen and pollutants, extensive optimization is required to exploit the maximum microbial potential. In this article, the main limiting factors of MFC operation are identified and suggestions are made to improve performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394

    Article  CAS  PubMed  Google Scholar 

  • Bergel A, Feron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904

    Article  CAS  Google Scholar 

  • Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR (2007) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 22:1672–1679

    Article  PubMed  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71:2186–2189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  PubMed  Google Scholar 

  • Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613

    Article  PubMed  CAS  Google Scholar 

  • Chang IS, Moon H, Jang JK, Kim BH (2005) Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron 20:1856–1859

    Article  PubMed  CAS  Google Scholar 

  • Chang IS, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16:163–177

    CAS  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnol 21:1229–1232

    Article  CAS  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006a) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494

    Article  CAS  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006b) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006c) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    Article  PubMed  CAS  Google Scholar 

  • Choo YF, Lee J, Chang IS, Kim BH (2006) Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. J Microbiol Biotechnol 16:1481–1484

    CAS  Google Scholar 

  • Crittenden SR, Sund CJ, Sumner JJ (2006) Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir 22:9473–9476

    Article  PubMed  CAS  Google Scholar 

  • Davis F, Higson SPJ (2007) Biofuel cells: recent advances and application. Biosens Bioelectron 22:1224–1235

    Article  CAS  PubMed  Google Scholar 

  • Ghangrekar MM, Shinde VB (2007) Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol 98:2879–2885

    Article  PubMed  CAS  Google Scholar 

  • Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    Article  PubMed  CAS  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Nat Acad Sci USA 103:11358–11363

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hasvold O, Henriksen H, Melvaer E, Citi G, Johansen BO Kjonigsen T, Galetti R (1997) Sea-water battery for subsea control systems. J Power Sources 65:253–261

    Article  CAS  Google Scholar 

  • He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015

    Article  CAS  Google Scholar 

  • He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40:5212–5217

    Article  PubMed  CAS  Google Scholar 

  • Holmes DE, Bond DR, Lovley DR (2004a) Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70:1234–1237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR (2004b) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecol 48:178–190

    Article  CAS  Google Scholar 

  • Holmes DE, Nicoll JS, Bond DR, Lovley DR (2004c) Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem 39:1007–1012

    Article  CAS  Google Scholar 

  • Jang JK, Chang IS, Moon H, Kang KH, Kim BH (2006) Nitrilotriacetic acid degradation under microbial fuel cell environment. Biotechnol Bioeng 95:772–774

    Article  PubMed  CAS  Google Scholar 

  • Jong BC, Kim BH, Chang IS, Liew PWY, Choo YF, Kang GS (2006) Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ Sci Technol 40:6449–6454

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Kim HJ, Hyun MS, Park DH (1999a) Direct electrode reaction of an Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131

    Google Scholar 

  • Kim BH, Ikeda T, Park HS, Kim HJ, Hyun MS, Kano K, Takagi K, Tatsumi H (1999b) Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13:475–478

    Article  CAS  Google Scholar 

  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30:145–152

    Article  CAS  Google Scholar 

  • Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003a) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Youn SM, Shin, SH, Jang JG, Han SH, Hyun MS, Gadd GM, Kim HJ (2003b) Practical field application of a novel BOD monitoring system. J Environ Monitoring 5:640–643

    Article  CAS  Google Scholar 

  • Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63:672–681

    Article  PubMed  CAS  Google Scholar 

  • Kim GT, Hyun MS, Chang IS, Kim HJ, Park HS, Kim BH, Kim SD, Wimpenny JWT, Weightman AJ (2005a) Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J Appl Microbiol 99:978–987

    Article  PubMed  CAS  Google Scholar 

  • Kim JR, Min B, Logan BE (2005b) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68:23–30

    Article  CAS  PubMed  Google Scholar 

  • Kim GT, Webster G, Wimpenny JW, Kim BH, Kim, HJ Weightman AJ (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 101:698–710

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Phung TN, Chang IS, Kim BH, Sung HC (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 223:185–191

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cheng S, Logan BE (2005a) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Cheng S, Logan BE (2005b) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  CAS  PubMed  Google Scholar 

  • Liu JL, Lowy DA, Baumann RG, Tender LM (2007) Influence of anode pretreatment on its microbial colonization. J Appl Microbiol 102:177–183

    Article  PubMed  CAS  Google Scholar 

  • Logan BE (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol 52:31–37

    Article  PubMed  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (2006a) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (2006b) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332

    Article  PubMed  CAS  Google Scholar 

  • Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR (2006) Harvesting energy from the marine sediment–water interface II: kinetic activity of anode materials. Biosens Bioelectron 21:2058–2063

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T (2003) Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta 48:1015–1021

    Article  CAS  Google Scholar 

  • Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814

    Article  CAS  PubMed  Google Scholar 

  • Min B, Kim JR, Oh SE, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Chang IS, Jang JK, Kim KS, Lee J, Lovitt RW, Kim BH (2005a) On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell. J Microbiol Biotechnol 15:192–196

    CAS  Google Scholar 

  • Moon H, Chang IS, Jang JK, Kim BH (2005b) Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem Eng J 27:59–65

    Article  CAS  Google Scholar 

  • Moon H, Chang IS, Kim BH (2006) Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technol 97:621–627

    Article  CAS  Google Scholar 

  • Oh SE, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39:4673–4682

    Article  PubMed  CAS  Google Scholar 

  • Oh SE, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70:162–169

    Article  PubMed  CAS  Google Scholar 

  • Oh SE, Min B, Logan BE (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 38:4900–4904

    Article  PubMed  CAS  Google Scholar 

  • Palmore TGR (2004) Bioelectric power generation. Trends Biotechnol 22:99–100

    Article  PubMed  CAS  Google Scholar 

  • Palmore GTR, Kim HH (1999) Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J Electroanal Chem 464:110–117

    Article  CAS  Google Scholar 

  • Park DH, Zeikus JG (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol 59:58–61

    Article  PubMed  CAS  Google Scholar 

  • Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355

    Article  PubMed  CAS  Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH,Yi H, Chun J (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134

    Article  CAS  PubMed  Google Scholar 

  • Pham TH, Jang JK, Chang IS, Kim BH (2004) Improvement of cathode reaction of a mediator-less microbial fuel cell. J Microbiol Biotechnol 14:324–329

    CAS  Google Scholar 

  • Pham TH, Jang JK, Moon HS, Chang IS, Kim BH (2005) Improved performance of microbial fuel cell using membrane-electrode assembly. J Microbiol Biotechnol 15:438–441

    CAS  Google Scholar 

  • Pham TH, Rabaey K, Aelterman P, Clauwaert P, de Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Engineering in Life Sciences 6:285–292

    Article  CAS  Google Scholar 

  • Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233:77–82

    Article  PubMed  CAS  Google Scholar 

  • Prasad D, Sivaram TK, Berchmans S, Yegnaraman V (2006) Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent. J Power Sources 160:991–996

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    Article  PubMed  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum M, Zhao F, Schroder U, Scholz F (2006) Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Angew Chem 45:6658–6661

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara JM, Fredrickson JK, Squier TC (2006) Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriol 188:4705–4714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tartakovsky B, Guiot SR (2006) A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnol Prog 22:241–246

    Article  PubMed  CAS  Google Scholar 

  • ter Heijne A, Hamelers HVM, de Wilde V, Rozendal RA, Buisman CJN (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40:5200–5205

    Article  PubMed  CAS  Google Scholar 

  • Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15

    Article  CAS  Google Scholar 

  • Willner I, Arad G, Katz E (1998) A biofuel cell based on pyrroloquinoline quinone and microperoxidase-1 monolayer-functionalized electrode. Bioelectrochem Bioenerg 44:209–214

    Article  CAS  Google Scholar 

  • Willner B, Katz E, Willner I (2006) Electrical contacting of redox proteins by nanotechnological means. Curr Opin Biotechnol 17:589–596

    Article  PubMed  CAS  Google Scholar 

  • Xiong YJ, Shi L, Chen BW, Mayer MU, Lower BH, Londer Y, Bose S, Hochella MF, Fredrickson JK, Squier TC (2006) High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J Am Chem Soc 128:13978–13979

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama H, Ohmori H, Ishida M, Waki M, Tanaka Y (2006) Treatment of cow-waste slurry by a microbial fuel cell and the properties of the treated slurry as a liquid manure. Anim Sci J 77:634–638

    Article  CAS  Google Scholar 

  • You SJ, Zhao QL, Jiang JQ, Zhang JN, Zhao SQ (2006a) Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. J Environ Sci Health Part A Environ Sci Eng Toxic Hazard Substance Control 41:2721–2734

    CAS  Google Scholar 

  • You SJ, Zhao QL, Zhang JN, Jiang JQ, Zhao SQ (2006b) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415

    Article  CAS  Google Scholar 

  • Zhang T, Cui C, Chen S, Ai X, Yang H, Shen P, Peng Z (2006) A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem Commun 2257–2259

  • Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410

    Article  CAS  Google Scholar 

  • Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40:5193–5199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported partly by the Ministry of Science and Technology, Korea through the National Research Laboratory programme (M1-0104-00-0024), and by the Korea Institute of Science and Technology (KIST) and Gwangju Institute of Science Technology (GIST, Research Center for Biomolecular Nanotechnology) institutional research programs. GMG and BHK gratefully acknowledge receipt of a Royal Society (London) South Korea–UK Project Grant (Ref 12152).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung Hong Kim or In Seop Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B.H., Chang, I.S. & Gadd, G.M. Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76, 485–494 (2007). https://doi.org/10.1007/s00253-007-1027-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1027-4

Keywords

Navigation