Skip to main content
Log in

Bacterial Diversity Patterns Differ in Soils Developing in Sub-tropical and Cool-Temperate Ecosystems

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 12 December 2016

Abstract

Microbial diversity patterns have been surveyed in many different soils and ecosystems, but we are unaware of studies comparing similar soils developing from similar parent materials in contrasting climates. In 2008, developmental chronosequences with ages ranging from 105 to 500,000 years across Georgia (GA) and Michigan (MI) were studied to investigate how bacterial community composition and diversity change as a result of local environmental gradients that develop during pedogenesis. Geographic factors were studied between and within locations spanning two scales: (1) regionally between 0.1 and 50 and (2) ∼1700 km apart. The diversity was surveyed using high-throughput pyrosequencing, and variance partitioning was used to describe the effects of spatial, environmental, and spatio-environmental factors on bacterial community composition. At the local scale, variation in bacterial communities was most closely related to environmental factors (rM = 0.59, p = 0.0001). There were differences in bacterial communities between the two locations, indicating spatial biogeography. Estimates of bacterial diversity were much greater in MI (numbers of OTU, ACE, and Chao1) and remained 2–3× greater in MI than GA after removing the effect of soil properties. The large differences in diversity between geographically separated bacterial communities in different climates need further investigation. It is not known if the rare members of the community, which contributed to greater bacterial diversity in GA relative to MI, play an important role in ecosystem function but has been hypothesized to play a role in ecosystem resiliency, resistance, and stability. Further research on the link between bacterial diversity and spatial variability related to climate needs further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387

    Article  CAS  PubMed  Google Scholar 

  2. Ranjard L, Dequiedt S, Jolivet C, Saby NPA, Thioulouse J, Harmand J, Loisel P, Rapaport A, Fall S, Simonet P, Joffre R, Bouré NCP, Maron PA, Mougel C, Martin MP, Toutain B, Arrouays D, Lemanceau P (2010) Biogeography of soil microbial communities: a review and a description of the ongoing French national initiative. Agron Sustain Dev 30:359–365

    Article  Google Scholar 

  3. Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental microbiology 14:2457-2466

  4. Sun B, Wang X, Wang F, Jiang Y, Zhang X-X (2013) Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Appl Environ Microbiol 79:3327–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  CAS  PubMed  Google Scholar 

  6. Fierer N (2008) Microbial biogeography: patterns in microbial diversity across space and time. ASM Press, Washington DC

    Google Scholar 

  7. Green J, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501–507

    Article  PubMed  Google Scholar 

  8. Green JL, Bohannan BJM, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039

    Article  CAS  PubMed  Google Scholar 

  9. Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54:777–784

    Article  Google Scholar 

  10. Pasternak Z, Al-Ashhab A, Gatica J, Gafny R, Avraham S, Minz D, Gillor O, Jurkevitch E (2013) Spatial and temporal biogeography of soil microbial communities in arid and semiarid regions. PLoS One 8, e69705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol

  12. Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978

    Article  CAS  PubMed  Google Scholar 

  13. Peay KG, Garbelotto M, Bruns TD (2010) Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology 91:3631–3640

    Article  PubMed  Google Scholar 

  14. Horner-Devine MC, Silver JM, Leibold MA, Bohannan BJM, Colwell RK, Fuhrman JA, Green JL, Kuske CR, Martiny JBH, Muyzer G (2007) A comparison of taxon co-occurrence patterns for macro-and microorganisms. Ecology 88:1345–1353

    Article  PubMed  Google Scholar 

  15. Winter C, Matthews B, Suttle CA (2013) Effects of environmental variation and spatial distance on Bacteria, Archaea and viruses in sub-polar and arctic waters. ISME J

  16. Zheng Y-M, Cao P, Fu B, Hughes JM, He J-Z (2013) Ecological drivers of biogeographic patterns of soil Archaeal community. PLoS One 8, e63375

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lichter J (1995) Lake Michigan beach-ridge and dune development, lake level, and variability in regional water balance. Quat Res 44:181–189

    Article  Google Scholar 

  18. Lichter J (1998) Rates of weathering and chemical depletion in soils across a chronosequence of Lake Michigan sand dunes. Geoderma 85:255–282

    Article  CAS  Google Scholar 

  19. Ivester AH, Leigh DS (2003) Riverine dunes on the Coastal Plain of Georgia, USA. Geomorphology 51:289–311

    Article  Google Scholar 

  20. Ivester AH, Leigh DS, Godfrey-Smith D (2001) Chronology of inland eolian dunes on the coastal plain of Georgia, USA. Quat Res 55:293–302

    Article  CAS  Google Scholar 

  21. Dequiedt S, Saby N, Lelievre M, Jolivet C, Thioulouse J, Toutain B, Arrouays D, Bispo A, Lemanceau P, Ranjard L (2011) Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Glob Ecol Biogeogr

  22. Maron PA, Mougel C, Ranjard L (2011) Soil microbial diversity: methodological strategy, spatial overview and functional interest. C R Biol

  23. Acosta-Martinez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770

    Article  CAS  Google Scholar 

  24. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P (2010) Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J 4:642–647

    Article  CAS  PubMed  Google Scholar 

  26. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516

    Article  CAS  PubMed  Google Scholar 

  28. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinf 12:38

    Article  Google Scholar 

  30. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6, e27310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  32. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design

  33. McCune B, Mefford MJ (1999) PC-ORD: multivariate analysis of ecological data. MjM Software Design

  34. ter Braak CJ, Verdonschot PF (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289

    Article  Google Scholar 

  35. Mitchell RJ, Hester AJ, Campbell CD, Chapman SJ, Cameron CM, Hewison RL, Potts JM (2010) Is vegetation composition or soil chemistry the best predictor of the soil microbial community? Plant Soil 333:417–430

    Article  CAS  Google Scholar 

  36. Gihring TM, Green SJ, Schadt CW (2012) Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ Microbiol 14:285–290

    Article  CAS  PubMed  Google Scholar 

  37. Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sokal RR, Oden NL (2008) Spatial autocorrelation in biology: 1. Methodology. Biol J Linn Soc 10:199–228

    Article  Google Scholar 

  39. Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  40. Whittaker R, Bush M, Richards K (1989) Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia. Ecol Monogr 59:59–123

    Article  Google Scholar 

  41. Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736

    Article  Google Scholar 

  42. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press

  43. Wang J, Shen J, Wu Y, Tu C, Soininen J, Stegen JC, He J, Liu X, Zhang L, Zhang E (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J

  44. Minasny B, McBratney AB, Salvador-Blanes S (2008) Quantitative models for pedogenesis—a review. Geoderma 144:140–157

    Article  CAS  Google Scholar 

  45. Landesman WJ, Nelson DM, Fitzpatrick MC (2014) Soil properties and tree species drive ß-diversity of soil bacterial communities. Soil Biol Biochem

  46. Hu Y, Xiang D, Veresoglou SD, Chen F, Chen Y, Hao Z, Zhang X, Chen B (2014) Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biol Biochem 77:51–57

    Article  CAS  Google Scholar 

  47. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beilke A, Bockheim J (2013) Carbon and nitrogen trends in soil chronosequences of the Transantarctic Mountains. Geoderma 197:117–125

    Article  Google Scholar 

  49. Lundquist E, Scow K, Jackson L, Uesugi S, Johnson C (1999) Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biol Biochem 31:1661–1675

    Article  CAS  Google Scholar 

  50. Fierer N, Schimel J, Holden P (2003) Influence of drying–rewetting frequency on soil bacterial community structure. Microb Ecol 45:63–71

    Article  CAS  PubMed  Google Scholar 

  51. Huggett R (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32:155–172

    Article  Google Scholar 

  52. Lichter J (1998) Primary succession and forest development oncoastal Lake Michigan sand dunes. Ecol Monogr 68:487–510

    Google Scholar 

  53. Chu H, Fierer N, Lauber CL, Caporaso J, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006

    Article  CAS  PubMed  Google Scholar 

  54. Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramette A, Tiedje JM (2007) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53:197–207

    Article  PubMed  Google Scholar 

  56. Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654

    Article  PubMed  Google Scholar 

  57. Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68:1854–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2005) Does ecosystem size determine aquatic bacterial richness? Ecology 86:1715–1722

    Article  Google Scholar 

  59. Ge Y, He J, Zhu Y, Zhang J, Xu Z, Zhang L, Zheng Y (2008) Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? ISME J 2:254–264

    Article  CAS  PubMed  Google Scholar 

  60. Tripathi BM, Lee-Cruz L, Kim M, Singh D, Go R, Shukor NAA, Husni MHA, Chun J, Adams JM (2014) Spatial scaling effects on soil bacterial communities in Malaysian tropical forests. Microb Ecol 1–12

  61. Pereira e Silva MC, Dias ACF, van Elsas JD, Salles JF (2012) Spatial and temporal variation of archaeal, bacterial and fungal communities in agricultural soils. PLoS One 7, e51554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research was supported by NSF grant (Award Number: 0743516) awarded to Mark Williams, William Whitman, and Kamlesh Jangid

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar G. Shanmugam.

Additional information

The original version of this article was revised: The article title was mistakenly amended to “Bacterial diversity patterns differed in two developing ecosystems”.

An erratum to this article is available at http://dx.doi.org/10.1007/s00248-016-0909-3.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugam, S.G., Magbanua, Z.V., Williams, M.A. et al. Bacterial Diversity Patterns Differ in Soils Developing in Sub-tropical and Cool-Temperate Ecosystems. Microb Ecol 73, 556–569 (2017). https://doi.org/10.1007/s00248-016-0884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0884-8

Keywords

Navigation