Skip to main content
Log in

Functional Role of Bacteria from Invasive Phragmites australis in Promotion of Host Growth

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We hypothesize that bacterial endophytes may enhance the competitiveness and invasiveness of Phragmites australis. To evaluate this hypothesis, endophytic bacteria were isolated from P. australis. The majority of the shoot meristem isolates represent species from phyla Firmicutes, Proteobacteria, and Actinobacteria. We chose one species from each phylum to characterize further and to conduct growth promotion experiments in Phragmites. Bacteria tested include Bacillus amyloliquefaciens A9a, Achromobacter spanius B1, and Microbacterium oxydans B2. Isolates were characterized for known growth promotional traits, including indole acetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis activity. Potentially defensive antimicrobial lipopeptides were assayed for through application of co-culturing experiments and mass spectrometer analysis. B. amyloliquefaciens A9a and M. oxydans B2 produced IAA. B. amyloliquefaciens A9a secreted antifungal lipopeptides. Capability to promote growth of P. australis under low nitrogen conditions was evaluated in greenhouse experiments. All three isolates were found to increase the growth of P. australis under low soil nitrogen conditions and showed increased absorption of isotopic nitrogen into plants. This suggests that the Phragmites microbes we evaluated most likely promote growth of Phragmites by enhanced scavenging of nitrogenous compounds from the rhizosphere and transfer to host roots. Collectively, our results support the hypothesis that endophytic bacteria play a role in enhancing growth of P. australis in natural populations. Gaining a better understanding of the precise contributions and mechanisms of endophytes in enabling P. australis to develop high densities rapidly could lead to new symbiosis-based strategies for management and control of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adamczyk B, Godlewski M, Zimny J, Zimny A (2008) Wheat (Triticum aestivum) seedlings secrete proteases from roots, and after protein addition, grow well on medium without inorganic nitrogen. Plant Biol 10:718–724

    Article  CAS  PubMed  Google Scholar 

  2. Adamczyk B, Smolander A, Kitunen V, Godlewski M (2010) Proteins as nitrogen source for plants, a short story about exudation of proteases by plant roots. Plant Signal Behav 5:817–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Almoneafy AA, Kakar KU, Nawaz Z, Li B, Ali M, Chun-lan Y, Xie G (2014) Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 63:59–70

    Article  CAS  Google Scholar 

  4. Andonian K, Hierro JL (2011) Species interactions contribute to the success of a global plant invader. Biol Invasions 13:2957–2965

    Article  Google Scholar 

  5. Angelini P, Rubini A, Gigante D, Reale L, Pagiotti R, Venanzoni R (2012) The endophytic fungal communities associated with the leaves and roots of the common reed (Phragmites australis) in Lake Trasimeno (Perugia, Italy) in declining and healthy stands. Fungal Ecol 5:683–693

    Article  Google Scholar 

  6. Aschehoug ET, Callaway RM, Newcombe G, Tharayil N, Chen S (2014) Fungal endophyte increases the allelopathic effects of an invasive. Forb Oecologia 175:285–91

    Article  PubMed  Google Scholar 

  7. Béchet M, Caradec T, Hussein W, Abderrahmani A, Chollet M, Leclère V, Dubois T, Lereclus D, Pupin M, Jacques P (2012) Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl Microbiol Biotechnol 95:593–600

    Article  PubMed  Google Scholar 

  8. Berg G, Müller H, Zachow C, Opelt K, Scherwinski K, Tilcher R, Ullrich A, Hallmann J, Grosch R, Sessitsch A (2008) Endophytes: structural and functional diversity and biotechnological applications in control of plant pathogens. Simbiogenetics 6:17–26

    CAS  Google Scholar 

  9. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:1–7

    Google Scholar 

  10. Borriss R, Chen X-H, Rueckert C, Blom J, Becker A, Baumgarth B, Fran B, Pukall R, Schumann P, Sproer C, Junge H, Vater J, Puhler A, Klenk H-P (2011) Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int J Syst Evol Microbiol 61:1768–1801

    Article  Google Scholar 

  11. Buchoux S, Lai-Kee-Him J, Garnier M, Tsan P, Besson F, Brisson A, Dufourc EJ (2008) Surfactin-triggered small vesicle formation of negatively charged membranes: a novel membrane-lysis mechanism. Biophys J 95:3840–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calheiros CSC, Pereira SFA, Brix H, Rangel AOSS, Castro PML (2016) Assessment of culturable bacterial endophytic communities colonizing Canna flaccida inhabiting a wastewater treatment constructed wetland. Ecol Eng. doi:10.1016/j.ecoleng.2016.04.002

  13. Callaway RM, Waller LP, Diaconu A, Pal R, Collins AR, Mueller-Schaerer H, Maron JL (2011) Escape from competition: neighbors reduce Centaurea stoebe performance at home but not away. Ecology 92:2208–2213

    Article  PubMed  Google Scholar 

  14. Carrim AJI, Barbosa EC, Vieira JDG (2006) Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham (Carobinha-do-campo) Brazilian. Arch Biol Technol 49:353–359

    Article  Google Scholar 

  15. Castanheira N, Dourado AC, Alves PI, Pallero-Cortés AM, Delgado-Rodríguez AI, Pazeres A, Borges N, Sánchez C, Crespo MTB, Fareleira P (2014) Annual ryegrass-associated bacteria with potential for plant growth promotion. Microbiol Res 169:768–779

    Article  CAS  PubMed  Google Scholar 

  16. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  PubMed  Google Scholar 

  17. Choi S-K, Jeong H, Kloepper JW, Ryu C-M (2014) Genome sequence of bacillus amyloliquefaciens GB03. Active ingredient of the first commercial biological control product. Genome Announc 2:1–2

    Google Scholar 

  18. Dabundo R, Lehmann MF, Treibergs L, Tobias CR, Altabet MA, Moisander PH, Granger J (2014) The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation. Meas PloS one 9, e110335

    Article  Google Scholar 

  19. Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model membranes. Biophys J 94:2667–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient. Cycling Process Ecosyst 6:503–523

    Article  CAS  Google Scholar 

  21. Ernst M, Mendgen KW, Wirsel SG (2003) Endophytic fungal mutualists: seedborne Stagonospora spp. enhance reed biomass production in a xenic microcosms. Mol Plant Microbe Interact 16:580–587

    Article  CAS  PubMed  Google Scholar 

  22. Farzana K, Shah SN, Butt FB, Awan SB (2005) Biosynthesis of bacitracin in solid-state fermentation by Bacillus licheniformis using defatted oil seed cakes as substrate. Pak J Pharm Sci 18:55–57

    CAS  PubMed  Google Scholar 

  23. Fer T, Hroudova Z (2009) Genetic diversity and dispersal of Phragmites australis in a small river system. Aquat Bot 90:165–171

    Article  Google Scholar 

  24. Fischer MS, Rodriguez RJ (2013) Fungal endophytes of invasive Phragmites australis populations vary in species composition and fungicide susceptibility. Symbiosis 61:55–62

    Article  CAS  Google Scholar 

  25. Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion. Low-Resource Syst Nat 446:1079–1081

    CAS  Google Scholar 

  26. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  27. González-Sánchez MA, Pérez-Jiménez RM, Pliego C, Ramos C, De Vicente A, Cazorla FM (2010) Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. J Appl Microbiol 109:65–78

    PubMed  Google Scholar 

  28. Gumuscu B, Tekinay T (2013) Effective biodegradation of 2,4,6-trinitrotoluene using a novel bacterial strain isolated from TNT-contaminated soil. Int Biodeterior Biodegrad 85:35–41

    Article  CAS  Google Scholar 

  29. Hardy RW, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hathout Y, Ho YP, Ryzhov V, Demirev P, Fenselau C (2000) Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 63:1492–1496

    Article  CAS  PubMed  Google Scholar 

  31. Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology Honolulu. The University Press of Hawaii, Hawaii

    Google Scholar 

  32. Hurek T, Reinhold B, Grimm B, Fendrik I, Niemann E-G (1988) Occurrence of effective nitrogen-scavenging bacteria in the rhizosphere of kallar grass. Plant Soil 110:339–348

    Article  CAS  Google Scholar 

  33. Jordan NR, Larson DL, Huerd SC (2008) Soil modification by invasive plants: effects on native and invasive species of mixed grass prairies. Biol Invasions 10:177–190

    Article  Google Scholar 

  34. Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Plant-Microbe Interact 22:456–468

    Article  CAS  Google Scholar 

  35. Kakar KU, Duan Y-P, Nawaz Z, Sun G, Almoneafy AA, Hassan MA, Elshakh A, Li B, Xie G-L (2013) A novel rhizobacterium Bk7 for biological control of brown sheath rot of rice caused by Pseudomonas fuscovaginae and its mode of action. Eur J Plant Pathol 137:1–16

    Article  Google Scholar 

  36. Kawaguchi A, Sawada H, Ichinose Y (2008) Phylogenetic and serological analyses reveal genetic diversity of Agrobacterium vitis strains. Jpn Plant Pathol 57:747–753

    Article  CAS  Google Scholar 

  37. Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145

    CAS  PubMed  Google Scholar 

  38. Kiraly KA, Pilinszky K, Bittsanszky A, Gyulai G, Kömives T (2013) Importance of ammonia detoxification by plants in phytoremediation and aquaponics. Alps-Adria Sci Workshop 12:100–102

    Google Scholar 

  39. Kowalski KP, Bacon CW, Bickford W, Braun H, Clay K, Leduc-Lapierre M, Lillard E, Melissa KM, Nelson E, Torres M, White J, Wilcox DA (2015) Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front Microbiol 6:1–14

    Article  Google Scholar 

  40. Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue can. J Microbiol 42:1112–1120

    CAS  Google Scholar 

  41. Leelasuphakul W, Hemmanee P, Chuenchitt S (2008) Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc) of citrus fruit. Postharvest Biol Technol 48:113–121

    Article  CAS  Google Scholar 

  42. Leishman MR, Thomson VP, Cooke J (2010) Native and exotic invasive plants have fundamentally similar carbon capture strategies. J Ecol 98:28–42

    Article  CAS  Google Scholar 

  43. Li YH, Zhu JN, Zhai ZH, Zhang Q (2010) Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu wetland (China). FEMS Microbiol Lett 309:84–93

    CAS  PubMed  Google Scholar 

  44. Li HY, Li DW, He CM, Zhou ZP, Mei T, Xu HM (2012) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb–Zn mine wasteland. China Fungal Ecol 5:309–315

    Article  Google Scholar 

  45. Li YH, Zhu JN, Liu QF, Liu Y, Liu L, Zhang Q (2013) Comparison of the diversity of root associated bacteria in Phragmites australis and Typhaangus- tifolia L in artificial wetlands. World J Microbiol Biotechnol 29:1499–1508

    Article  PubMed  Google Scholar 

  46. Lima JVL, Weber OB, Correia D, Soares MA, Senabio JA (2015) Endophytic bacteria in cacti native to a Brazilian semi-arid region. Plant Soil 389:25–33

    Article  CAS  Google Scholar 

  47. Lissner J, Schierup HH, Comin FA, Astorga V (1999) Effect of climate on the salt tolerance of two Phragmites australis populations I Growth, inorganic solutes, nitrogen relations and osmoregulation. Aquat Bot 64:317–333

    Article  CAS  Google Scholar 

  48. Lissner J, Schierup HH, Comin FA, Astorga V (1999) Effect of climate on the salt tolerance of two Phragmites australis populations II Diurnal CO2 exchange and transpiration. Aquat Bot 64:335–350

    Article  CAS  Google Scholar 

  49. Lopez BR, Bashan Y, Bacilio M, Cruz-Agüero G (2009) Rock colonizing plants: abundance of the endemic cactus Mammillaria fraileana related to rock type in the southern Sonoran desert. Plant Ecol 201:575–588

    Article  Google Scholar 

  50. Ma B, Lv XF, Warren A, Gong J (2013) Shifts indiversity and community structure of endophytic Bacteria and Achaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie Van Leeuwenhoek 104:759–768

    Article  PubMed  Google Scholar 

  51. Magnet-Dana R, Thimon L, Peypoux F, Ptak M (1992) Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin. A Biochimie 74:1047–1051

    Article  Google Scholar 

  52. Mano H, Tanaka F, Nakamura C, Kaga H, Morisaki H (2007) Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 22:175–185

    Article  Google Scholar 

  53. Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Gen Mol Res 9:2372–2380

    Article  CAS  Google Scholar 

  54. Meyerson LA, Saltonstall K, Windham L, Kiviat E, Findlay S (2000) A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetl Ecol Manag 8:89–103

    Article  CAS  Google Scholar 

  55. Meyerson LA, Lambertini C, McCormick M, Whigham D (2012) Hybridization of common reed in North America? The answer is blowing in the wind. AoB Plants pls022

  56. Mozdzer TJ, Zieman JC, McGlathery KJ (2010) Nitrogen uptake by native and invasive temperate coastal macrophytes: importance of dissolved organic nitrogen. Estuar Coasts 33:784–797

    Article  CAS  Google Scholar 

  57. Mozdzer TJ, Megonigal JP (2012) Jack-and-master trait responses to elevated CO2 and N: a comparison of native and Introduced. Phragmites Australis PLoS ONE 7, e42794

    Article  CAS  PubMed  Google Scholar 

  58. Norris JR, Chapman HM (1968) Classification of Azotobacter. In: Gibbs BM, Shapto DA (eds) Trends in identification methods for microbiologists. Academic Press London, New York, pp 19–27

    Google Scholar 

  59. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–25

    Article  CAS  PubMed  Google Scholar 

  60. Patel H, Tscheka C, Edwards K, Karlsson G, Heerkotz H (2011) All-or none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis. QST713 Biochim Biophys Acta 1808: 2000–2008

  61. Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb R, Sagulenko E, Nasholm T, Schmidt S, Lonhienne T (2010) Turning the table: plants consume microbes as a source of nutrients. PLoS One 5(7), e11915

    Article  PubMed  PubMed Central  Google Scholar 

  62. Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  63. Pohjanen J, Koskimäki JJ, Pirttilä AM (2014) Interactions of meristem-associated endophytic bacteria. In: Verma VC, Gange AC (eds) Advances in endophytic research. New Delhi, Springer India, pp 103–113

    Chapter  Google Scholar 

  64. Qiao JQ, Wu HJ, Huo R, Gao XW, Borriss R (2014) Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chem Biol Technol Agric 1:12

    Article  Google Scholar 

  65. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Article  CAS  PubMed  Google Scholar 

  66. Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445–457

    Article  PubMed  Google Scholar 

  67. Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez R, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  69. Rout ME, Chrzanowski TH (2009) The invasive Sorghum halepense harbors endophytic n2-fixing bacteria and alters soil biogeochemistry. Plant Soil 315:163–172

    Article  CAS  Google Scholar 

  70. Saltonstall K, Peterson PM, Soreng RJ (2004) Recognition of Phragmites australis subsp americanus (Poaceae:Arundinoideae). North America: evidence from morphological and genetic analyses SIDA. Cont Bot 21:683–692

    Google Scholar 

  71. Sauvêtre A, Schröder P (2015) Up take of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Front Plant Sci 6:1–11

    Google Scholar 

  72. Schulz BJE, Boyle CJC (2006) What are endophytes? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  73. Suman A, Shrivastava AK, Gaur A, Singh P, Singh J, Yadav RL (2008) Nitrogen use efficiency of sugarcane in relation to its BNF potential and population of endophytic diazotrophs at different n levels. Plant Growth Regul 54:1–11

    Article  CAS  Google Scholar 

  74. Sylvester-Bradley R, Asakawa N, Torraca SLA, Magalhaes FMM, Oliveira LA, Pereira RM (1982) Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amazon 12:15–22

    Google Scholar 

  75. Thimon L, Peypoux F, Wallach J, Michel G (1995) Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol Lett 128:101–106

    Article  CAS  PubMed  Google Scholar 

  76. Uchytil RJ (1992) Phragmites australis. IOP: US, Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Fire Effects Information System http://www.fs.fed.us/database/feis/plants/graminoid/phraus/all.html. Accessed 03 Mar 2016

  77. Van der Putten WH, Klironomos JN, Wardle DA, (2007) Microbial ecology of biological invasions ISME J 1: 28–37

  78. Wang CY, Xiao HG, Liu J, Wang L, Du DL (2015) Insights into ecological effects of invasive plants on soil nitrogen cycles American. J Plant Sci 6:34–46

    Article  Google Scholar 

  79. Weidenhamer JD, Li M, Allman J, Bergosh RG, Posner M (2013) Evidence does not support a role for gallic acid in Phragmites australis invasion success. J Chem Ecol 39:323–332

    Article  CAS  PubMed  Google Scholar 

  80. White JF, Chen Q, Torres MS, Mattera R, Irizarry Tadych M, Bergen M (2015) Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB Plants 7: plu093

  81. White JF, Torres MS, Somu MP, Johnson H, Irizarry I, Chen Q, Zhang N, Walsh E, Tadych M, Bergen MS (2014) Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells. Microsc Res Tech 77:566–573

    Article  CAS  PubMed  Google Scholar 

  82. Xu J, Zhang J, Zhao C, Li C, Xie H, Wang S (2012) Effect of ammonia stress on physiological and biochemical character of Phragmites australis. Constructed wetland Third International Conference on Digital Manufacturing & Automation 343–346

  83. Yuan J, Raza W, Huang Q, Shen Q (2012) The ultrasound-assisted extraction and identification of antifungal substances from B amyloliquefaciens strain NJN-6 suppressing Fusarium oxysporum J. Basic Microbiol 52:721–730

    Article  CAS  Google Scholar 

  84. Yuan J, Ruan Y, Wang B, Zhang J, Waseem R, Huang Q, Shen Q (2013) Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants. J Agric Food Chem 61:3774–3780

    Article  CAS  PubMed  Google Scholar 

  85. Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of brassica napus. Chemosphere 83:57–62

    Article  CAS  PubMed  Google Scholar 

  86. Zhao ZZ, Wang QS, Wang KM, Brain K, Liu CH, Gu YC (2010) Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour Technol 101:292–297

    Article  CAS  PubMed  Google Scholar 

  87. Zhao P, Quan C, Jin L, Wang L, Wang J, Fan S (2013) Effects of critical medium components on the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426 exhibiting excellent biosurfactant properties. World J Microbiol Biotechnol 29:401–409

    Article  PubMed  Google Scholar 

  88. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru C, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68(5):2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful for funding and other support to the US Geological Survey, the John E. and Christina C. Craighead Foundation, USDA-NIFA Multistate Project W3147, The New Jersey Agricultural Experiment Station, The Federal University of Mato Grosso (UFMT), Department of Plant Biology and Pathology of Rutgers University, The Brazilian National Council for Scientific and Technological Development (CNPq) for Post Doctoral Fellowship, and the International Institute of Science and Technology in Wetlands (INAU). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. This article is a contribution of the USGS Great Lakes Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Soares.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material Table 1

Primers for PCR detection of biosynthetic genes for antimicrobial lipopeptides and microorganism identification (DOCX 20 kb)

Electronic Supplementary Material Table 2

PCR screening and identity of biosynthetic genes for antimicrobial lipopeptides (DOCX 21 kb)

Electronic Supplementary Material Table 3

Assignments of selected m/z peaks observed in mass spectra of antimicrobial peptides from Bacillus amyloliquefaciens A9a (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, M.A., Li, HY., Kowalski, K.P. et al. Functional Role of Bacteria from Invasive Phragmites australis in Promotion of Host Growth. Microb Ecol 72, 407–417 (2016). https://doi.org/10.1007/s00248-016-0793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0793-x

Keywords

Navigation