Skip to main content
Log in

Acetate Enhances the Specific Consumption Rate of Toluene Under Denitrifying Conditions

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Toluene is usually present in the environment as a contaminant along with other carbon sources which may influence its removal. In this work we studied the effect of a readily consumable carbon source such as acetate on toluene mineralization under denitrifying conditions. Continuous and batch cultures with stabilized denitrifying sludge were carried out. An upflow anaerobic sludge blanket reactor (UASB) was fed with several ratios of acetate-C/toluene-C loading rates (mg C/L-day: 100/0, 75/25, 50/50, and 0/100). Batch assays with different acetate-C/toluene-C ratios (10/70, 30/50, 50/30, and 65/20 mg C/L) were also done. As the acetate loading rate decreased in the culture, the carbon and nitrate consumption efficiency decreased by 40% and 34%, respectively. HCO3 and N2 yields also decreased by 43%. Analysis of the denitrifying community using the denaturing gradient gel electrophoresis technique indicated that there was no clear relationship between its population profile and the metabolic pattern. In batch assays, when the acetate concentration was higher than that of toluene (65 mg acetate-C/L vs 20 mg toluene-C/L), the specific consumption rate of toluene (qT) was two times higher than in assays with 20 mg toluene-C/L as the sole electron source (0.006 mg C/mg volatile suspended solids-day). It is proposed that acetate can act by enhancing the growth of microbial populations and as a biochemical enhancer. The results show that acetate addition can be useful to improve the consumption rate of toluene in contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An YJ, Joo YH, Hong IY, Ryu HW, Cho KS (2004) Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Appl Microbiol Biotechnol 65:611–619. doi:10.1007/s00253-004-1596-4

    Article  CAS  Google Scholar 

  • APHA (1995) Standard methods for examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC, pp 2–56 (2–57)

  • Barker JF, Patrick GC, Major D (1987) Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Ground Water Monit Rem 7:64–72. doi:10.1111/j.1745-6592.1987.tb01063.x

    Article  CAS  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1990) Ecology: individuals, populations and communities, 2nd edn. Blackwell Scientific, Cambridge, MA

    Google Scholar 

  • Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64:437–446. doi:10.1007/s00253-003-1526-x

    Article  CAS  Google Scholar 

  • Chouaniere D, Wild P, Fontana JM, Hery M, Fournier M, Baudin V, Subra I, Rousselle D, Toamain JP, Saurin S, Ardiot MR (2002) Neurobehavioral disturbances arising from occupational toluene exposure. Am J Ind Med 41:77–88. doi:10.1002/ajim.10030

    Article  CAS  Google Scholar 

  • Corseuil HX, Hunt CS, Ferreira-Dos Santos RC, Alvarez PJJ (1998) The influence of the gasoline oxygenate ethanol on aerobic and anaerobic BTX biodegradation. Water Res 32:2065–2072. doi:10.1016/S0043-1354(97)00438-7

    Article  CAS  Google Scholar 

  • Cuervo-López F, Martínez F, Gutiérrez-Rojas M, Loyola RA, Gómez J (1999) Effect of nitrogen loading rate and carbon source on denitrification sludge settleability in upflow anaerobic sludge blanket (UASB) reactors. Water Sci Technol 40:123–130. doi:10.1016/S0273-1223(99)00617-4

    Google Scholar 

  • Da Silva MLB, Alvarez PJJ (2002) Effects of ethanol versus MTBE on benzene, toluene, ethylbenzene, and xylene natural attenuation in aquifer columns. J Environ Eng 128:862–867. doi:10.1061/(ASCE)0733-9372(2002)128:9(862)

    Article  Google Scholar 

  • Da Silva LBM, Ruiz-Aguilar GML, Alvarez PJJ (2005) Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation 16:105–114. doi:10.1007/s10532-004-4897-5

    Article  Google Scholar 

  • Duetz WA, Marques S, De Jong C, Ramos JL, Van Andel JG (1994) Inductibility of the TOL catabolic pathway Pseudomonas putida (pWW0) growing on succinate in continuos cultures: evidence of carbon catabolite repression control. J Bacteriol 176:2354–2361

    CAS  Google Scholar 

  • Ebihara T, Bishop PL (2002a) Influence of supplemental acetate on bioremediation for dissolved polycyclic aromatic hydrocarbons. J Environ Eng 128:505–513. doi:10.1061/(ASCE)0733-9372(2002)128:6(505)

    Article  CAS  Google Scholar 

  • Ebihara T, Bishop PL (2002b) Effect of acetate on biofilms utilized in PAH bioremediation. Environ Eng Sci 19:305–319. doi:10.1089/10928750260418944

    Article  CAS  Google Scholar 

  • Edwards EA, Grbic-Galic D (1994) Anaerobic degradation of toluene and o-xylene by a methanogenic consortium. Appl Environ Microb 60:613–622

    Google Scholar 

  • Gómez J, Méndez R, Lema J (1996) The effect of antibiotics on nitrification process: batch assays. Appl Biochem Biotech 57:869–876. doi:10.1007/BF02941767

    Article  Google Scholar 

  • Greenberg MM (1997) The central nervous system and exposure to toluene: a risk characterization. Environ Res 72:1–7. doi:10.1006/enrs.1996.3686

    Article  CAS  Google Scholar 

  • Gusmao VR, Martins TH, Chinalia FA, Sakamoto IK, HenriqueThiemann O, Varesche MBA (2006) BTEX and ethanol removal in horizontal-flow anaerobic immobilized biomass reactor, under denitrifying condition. Process Biochem 41:1391–1400. doi:10.1016/j.procbio.2006.02.001

    Article  CAS  Google Scholar 

  • Hintze J (2001) Number cruncher statistical system (NCSS). NCSS, Kaysville, UT

    Google Scholar 

  • Kuhn EP, Zeyer J, Eiche P, Schwarzenbach RP (1988) Anaerobic degradation of alkylated bencenes in denitrifying laboratory aquifer columns. Appl Environ Microb 54:490–496

    CAS  Google Scholar 

  • Lovanh N, Alvarez PJJ (2004) Effect of ethanol, acetate, and phenol on toluene degradation activity and tod–lux expression in Pseudomonas putida TOD 102: evaluation of the metabolic flux dilution model. Biotechnol Bioeng 86:801–808. doi:10.1002/bit.20090

    Article  CAS  Google Scholar 

  • Martínez S, Cuervo-López FM, Gómez J (2007) Toluene mineralization by denitrification in an up flow anaerobic sludge blanket (UASB) reactor. Bioresource Technol 98:1717–1723. doi:10.1016/j.biortech.2006.07.046

    Article  Google Scholar 

  • Mateju V, Cizinska S, Krejei J, Janoch T (1992) Biological water denitrification. A review. Enzyme Microb Tech 14:170–183

    Article  CAS  Google Scholar 

  • Morgan P (1993) Biodegradation of benzene, toluene, ethylbenzene and xylenes in gas-condensate-contaminated ground-water. Environ Pollut 82:181–190. doi:10.1016/0269-7491(93)90115-5

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microb 59:695–700

    CAS  Google Scholar 

  • Muyzer G, Hottentrager S, Teske A, Wawer C (1996) Denaturing gradient gel electrophoresis of PCR amplified 16S rDNA—a new molecular approach to analyze the genetic diversity of mixed microbial communities. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic, Dordrecht, The Netherlands, Chap 3.4.4, pp 1–23

  • Peña-Calva A, Olmos DA, Viniegra GG, Cuervo-López F, Gómez J (2004) Denitrification in presence of benzene, toluene, and m-xylene. Appl Biochem Biotech 119:195–208. doi:10.1007/s12010-004-0002-0

    Article  Google Scholar 

  • Phelps CD, Young LY (1999) Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments. Biodegradation 10:15–25. doi:10.1023/A:1008303729431

    Article  CAS  Google Scholar 

  • Pierce CH, Dills RL, Morgan M, Vicini P, Kalman DA (1998) Biological monitoring of controlled toluene exposure. Int Arch Occup Environ Health 71:433–444. doi:10.1007/s004200050303

    Article  CAS  Google Scholar 

  • Ramírez-Saad H, Akkermans WL, Akkermans ADL (1997) DNA extraction from actinorhizal nodules. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic, Dordrecht, The Netherlands, Chap 1.4.4, pp 1–11

  • Roling WFM, van Breukelen BM, Braster M, Lin B, van Verseveld HW (2001) Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microbiol 67:4619–4629. doi:10.1128/AEM.67.10.4619-4629.2001

    Article  CAS  Google Scholar 

  • Sanguinetti CJ, Dias Neto E, Simpson AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Bio Techniques 17:915–919

    Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Su JJ, Kafkewitz D (1994) Utilization of toluene and xylenes by a nitrate reducing strain of Pseudomonas maltophilia under low oxygen and anoxic conditions. FEMS Microbiol Ecol 15:249–258. doi:10.1111/j.1574-6941.1994.tb00248.x

    Article  CAS  Google Scholar 

  • USEPA (2001) National primary drinking water standards. Office of Water, U.S. Environmental Protection Agency, Washington, DC

  • Xia S, Shi Y, Fu Y, Ma X (2005) DGGE analysis of 16S rDNA of ammonia-oxidizing bacteria in chemical–biological flocculation and chemical coagulation systems. Appl Microbiol Biotechnol 69:99–105. doi:10.1007/s00253-005-0035-5

    Article  CAS  Google Scholar 

  • Zeyer J, Kuhn EP, Schwarzenbach RP (1986) Rapid microbial mineralization of toluene and 1, 3-dimethylbenzene in the absence of molecular oxygen. Appl Environ Microb 52:944–947

    CAS  Google Scholar 

Download references

Acknowledgment

This study received financial support from the Consejo Nacional de Ciencia y Tecnología (CONACyT), México (Grant SEP-2003-C02-43144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flor de María Cuervo-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Hernández, S., Olguín, E.J., Gómez, J. et al. Acetate Enhances the Specific Consumption Rate of Toluene Under Denitrifying Conditions. Arch Environ Contam Toxicol 57, 679–687 (2009). https://doi.org/10.1007/s00244-009-9321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9321-z

Keywords

Navigation