Skip to main content
Log in

Design and Implementation of a Microelectrode Assembly for Use on Noncontact In Situ Electroporation of Adherent Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

In situ electroporation of adherent cells provides significant advantages with respect to electroporation systems for suspension cells, such as causing minimal stress to cultured cells and simplifying and saving several steps within the process. In this study, a new electrode assembly design is shown and applied to in situ electroporate adherent cell lines growing in standard multiwell plates. We designed an interdigitated array of electrodes patterned on copper with printed circuit board technology and covered with nickel/gold. Small interelectrode distances were used to achieve effective electroporation with low voltages. Epoxy-based microseparators were constructed to avoid direct contact with the cells and to create more uniform electric fields. The device was successful in the electropermeabilization of two different adherent cell lines, C2C12 and HEK 293, as assessed by the intracellular delivery of the fluorescent dextran FD20S. Additionally, as a collateral effect, we observed cell electrofusion in HEK 293 cells, thus making this device also useful for performing cell fusion. In summary, we show the effectiveness of this minimally invasive device for electroporation of adherent cells cultured in standard multiwell plates. The cheap technologies used in the fabrication process of the electrode assembly indicate potential use as a low-cost, disposable device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambati J et al (2000) Diffusion of high molecular weight compounds through sclera. Investig Ophthalmol Vis Sci 41:1181–1185

    CAS  Google Scholar 

  • Bettega D, Calzolari P, Doglia SM, Dulio B, Tallone L, Villa AM (1998) Cell thickness measurements by confocal fluorescence microscopy on C3H10T1/2 and V79 cells. Int J Radiat Biol 74(3):397–403

    Article  PubMed  CAS  Google Scholar 

  • Braeken D, Huys R et al (2010) Single-cell stimulation and electroporation using a novel 0.18 μm CMOS chip with subcellular-sized electrodes. Engineering in Medicine and Biology Society (EMBC), 2010 annual international conference of the IEEE, Buenos Aires, Argentina, 31 August–4 September

  • Chang DC, Chassy BM, Saunders JA, Sowers AE (eds) (1992) Guide to electroporation and electrofusion. Academic Press, New York, pp 201–207

    Google Scholar 

  • De Vuyst E et al (2008) In situ bipolar electroporation for localized cell loading with reporter dyes and investigating gap junctional coupling. Biophys J 94(2):469–479

    Article  PubMed  Google Scholar 

  • Deora AA, Diaz F, Schreiner R, Rodriguez-Boulan E (2007) Efficient electroporation of DNA and protein into confluent and differentiated epithelial cells in culture. Traffic 8:1304–1312

    Article  PubMed  CAS  Google Scholar 

  • Dev SB, Rabussay DP et al (2000) Medical applications of electroporation. IEEE Trans Plasma Sci 28(1):206–223

    Article  CAS  Google Scholar 

  • Durante M et al (1993) Thickness measurements on living cell monolayers by nuclear methods. Nucl Instrum Methods Phys Res B 73(4):543–549

    Article  Google Scholar 

  • Ephrem Tekle RDA, Bonn Chock P (1991) Electroporation by using bipolar oscillating electric field: an improved method for DNA transfection of NIH 3T3 cells. Proc Natl Acad Sci USA 88:4230–4234

    Article  Google Scholar 

  • Geng T, Zhan Y et al (2010) Flow-through electroporation based on constant voltage for large-volume transfection of cells. J Control Release 144(1):91–100

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Wei Z et al (2011) An efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab Chip 11(1):163–172

    Article  PubMed  CAS  Google Scholar 

  • Hui SW (1995) Effects of pulse length and strength on electroporation efficiency. Anim Cell Electroporation Electrofusion Protoc 48:29–40

    Article  CAS  Google Scholar 

  • Lambert H, Pankov R, Gauthier J, Hancock R (1990) Electroporation-mediated uptake of proteins into mammalian cells. Biochem Cell Biol 68:729–734

    Article  PubMed  CAS  Google Scholar 

  • Lebar AM, Troiano GC et al (2002) Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers. IEEE Trans Nanobiosci 1(3):116–120

    Article  Google Scholar 

  • Lin Y-C, Li M et al (2003) A microchip for electroporation of primary endothelial cells. Sens Actuators A 108(1–3):12–19

    Google Scholar 

  • Lisen W, Flanagan L, Lee AP (2007) Side-wall vertical electrodes for lateral field microfluidic applications. J Microelectromech Syst 16(2):454–461

    Article  Google Scholar 

  • Marjanovič I, Haberl S, Miklavčič D, Kandušer M, Pavlin M (2010) Analysis and comparison of electrical pulse parameters for gene electrotransfer of two different cell lines. J Membr Biol 236:97–105

    Article  PubMed  Google Scholar 

  • Neumann E, Schaefer-Ridder M et al (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845

    PubMed  CAS  Google Scholar 

  • Olbrich M, Rebollar E et al (2008) Electroporation chip for adherent cells on photochemically modified polymer surfaces. Appl Phys Lett 92(1):013901–013903

    Article  Google Scholar 

  • Raptis L, Firth KL (2008) Electrode assemblies used for electroporation of cultured cells. Methods Mol Biol 423:61–76

    Article  PubMed  CAS  Google Scholar 

  • Rols M-P, Teissié J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Salomskaite-Davalgiene S et al (2009) Extent of cell electrofusion in vitro and in vivo is cell line dependent. Anticancer Res 29(8):3125–3130

    PubMed  Google Scholar 

  • Stopper H, Jones H, Zimmermann U (1987) Large scale transfection of mouse L-cells by electropermeabilization. Biochim Biophys Acta 900:38–44

    Article  PubMed  CAS  Google Scholar 

  • Teissie J, Golzio M et al (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 1724(3):270–280

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Orwar O et al (2010) Single-cell electroporation. Anal Bioanal Chem 397(8):3235–3248

    Article  PubMed  CAS  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41(2):135–160

    Article  CAS  Google Scholar 

  • Wegener J, Keese CR, Giaever I (2002) Recovery of adherent cells after in situ electroporation monitored electrically. Biotechniques 33:348–357

    PubMed  CAS  Google Scholar 

  • Wolf H, Rols MP et al (1994) Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J 66(2, pt 1):524–531

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Chang DC (1991) High-efficiency gene transfection by in situ electroporation of cultured cells. Biochim Biophys Acta 1088:104–110

    Article  PubMed  CAS  Google Scholar 

  • Ziv R et al (2009) Micro-electroporation of mesenchymal stem cells with alternating electrical current pulses. Biomed Microdevices 11(1):95–101

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by project VALTEC09-1-0061 from the Generalitat de Catalunya, ACC1Ó. We thank Anna Orozco and Alfonso Mendez for unconditional assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás García-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Sánchez, T., Sánchez-Ortiz, B., Vila, I. et al. Design and Implementation of a Microelectrode Assembly for Use on Noncontact In Situ Electroporation of Adherent Cells. J Membrane Biol 245, 617–624 (2012). https://doi.org/10.1007/s00232-012-9474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9474-y

Keywords

Navigation