Skip to main content
Log in

The Negative Effect of Soy Extract on Erythrocyte Membrane Fluidity: An Electron Paramagnetic Resonance Study

The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A decrease of erythrocyte membrane fluidity can contribute to the pathophysiology of hypertension. Soy products, which are used as alternative therapeutics in some cardiovascular conditions, contain various isoflavones (genistein, daidzein, and their glucosides, genistin and daidzin), which can incorporate cellular membrane and change its fluidity. The aim of this study was to examine the effects of soy extract (which generally corresponds to the soy products of isoflavone composition) on erythrocyte membrane fluidity at graded depths. We used electron paramagnetic resonance spectroscopy and fatty acid spin probes (5-DS and 12-DS), the spectra of which are dependent on membrane fluidity. After being treated with soy extract, erythrocytes showed a significant (P = 0.016) decrease of membrane fluidity near the hydrophilic surface, while there were no significant changes of fluidity in deeper hydrophobic membrane regions. These results suggest that soy products containing high levels of genistein and isoflavone glucosides may not be suitable for use in hypertension because they decrease erythrocyte membrane fluidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Ajdžanović V, Spasojević I, Filipović B, Šošić-Jurjević B, Sekulić M, Milošević V (2010) Effects of genistein and daidzein on erythrocyte membrane fluidity: an electron paramagnetic resonance study. Can J Physiol Pharmacol 88:497–500

    Article  PubMed  Google Scholar 

  • Andlauer W, Kolb J, Fürst P (2004) Phloridzin improves absorption of genistin in isolated rat small intestine. Clin Nutr 23:989–995

    Article  CAS  PubMed  Google Scholar 

  • Anglin TC, Cooper MP, Li H, Chandler K, Conboy JC (2010) Free energy and entropy of activation for phospholipids flip-flop in planar supported lipid bilayers. J Phys Chem B 114:1903–1914

    Article  CAS  PubMed  Google Scholar 

  • Bahri MA, Heyne BJ, Hans P, Seret AE, Mouithys-Mickalad AA, Hoebeke MD (2005) Quantification of lipid bilayer effective microviscosity and fluidity effect induced by propofol. Biophys Chem 114:53–61

    Article  CAS  PubMed  Google Scholar 

  • Bahri MA, Seret AE, Hans P, Piette J, Deby-Dupont G, Hoebeke M (2007) Does propofol alter membrane fluidity at clinically relevant concentrations? An ESR spin label study. Biophys Chem 129:82–91

    Article  CAS  PubMed  Google Scholar 

  • Cassidy A, Hanley B, Lamuela-Raventos RM (2000) Isoflavones, lignans and stilbenes-origins, metabolism and potential importance to human health. J Sci Food Agric 80:1044–1062

    Article  CAS  Google Scholar 

  • Cooper P, Kudynska J, Buckmaster HA, Kudynski R (1992) An EPR investigation of spin-labelled erythrocytes as a diagnostic technique for malignant hyperthermia. Biochim Biophys Acta 1139:70–76

    CAS  PubMed  Google Scholar 

  • Crimi E, Ignarro LJ, Napoli C (2007) Microcirculation and oxidative stress. Free Radic Res 41:1364–1375

    Article  CAS  PubMed  Google Scholar 

  • Day AJ, Williamson G (2001) Biomarkers for exposure to dietary flavonoids: a review of the current evidence for identification of quercetin glycosides in plasma. Br J Nutr 86:S105–S110

    Article  CAS  PubMed  Google Scholar 

  • De Lima Toccafondo Vieira M, Ferreira Duarte R, Moreira Campos LM, De Aguiar Nunan E (2008) Comparison of the estrogenic potencies of standardized soy extracts by immature rat uterothropic bioassay. Phytomedicine 15:31–37

    Article  PubMed  Google Scholar 

  • Doerge D, Sheehan D (2002) Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect 110:349–353

    Article  CAS  PubMed  Google Scholar 

  • Gaffney BJ (1976) Practical considerations for the calculation of order parameters for fatty acids or phospholipid spin labels in membranes. In: Berliner LJ (ed) Spin labeling: theory and applications. Academic, New York, pp 567–571

    Google Scholar 

  • Grammenos A, Bahri MA, Guelluy PH, Piel G, Hoebeke M (2009) Quantification of randomly-methylated-β-cyclodextrin effects on liposome. An ESR study. Biochem Biophys Res Commun 390:5–9

    Article  CAS  PubMed  Google Scholar 

  • Kritz H, Underwood SR, Sinzinger H (1996) Imaging of atherosclerosis (part I). Wien Klin Wochenschr 108:87–97

    CAS  PubMed  Google Scholar 

  • Kruk I, Aboul-Enein HY, Michalska T, Lichszteld K, Kladna A (2005) Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein. Luminescence 20:81–89

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JH, Gardner PT, Mcphail DB, Morrice ARC, Duthie GG (1998) Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch Biochem Biophys 360:142–148

    Article  CAS  PubMed  Google Scholar 

  • Orlov SN, Gulak PV, Litvinov IS, Postnov YV (1982) Evidence of altered structure of the erythrocyte membrane in spontaneously hypertensive rats. Clin Sci (Lond) 63:43–45

    CAS  Google Scholar 

  • Postnov YV, Orlov SN (1984) Cell membrane alteration as a source of primary hypertension. J Hypertens 2:1–6

    Article  CAS  PubMed  Google Scholar 

  • Raines EW, Ross R (1995) Biology of atherosclerotic plaque formation: possible role of growth factors in lesion development and the potential impact of soy. J Nutr 125:624S–630S

    CAS  PubMed  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085S

    CAS  PubMed  Google Scholar 

  • Setchell KDR (1985) Naturally occurring non-steroidal estrogens of dietary origin. In: McLachlan J (ed) Estrogens in the environment: influence on development. Elsevier, New York, pp 69–85

    Google Scholar 

  • Shimizu K, Maitani Y, Takayama K, Nagai T (1996) Characterization of dipalmitoylphosphatidylcholine liposomes containing a soybean-derived sterylglucoside mixture by differential scanning calorimetry, Fourier transform infrared spectroscopy, and enzymatic assay. J Pharm Sci 85:741–744

    Article  CAS  PubMed  Google Scholar 

  • Spasojević I, Maksimović V, Zakrzewska J, Bačić G (2005) Effects of 5-fluorouracil on erythrocytes in relation to its cardiotoxicity: membrane structure and functioning. J Chem Inf Model 45:1680–1685

    Article  PubMed  Google Scholar 

  • Tsuda K, Iwahashi H, Minatogawa Y, Nishio I, Kido R, Masuyama Y (1987) Electron spin resonance studies of erythrocytes from spontaneously hypertensive rats and humans with essential hypertension. Hypertension 9:III19–III24

    CAS  PubMed  Google Scholar 

  • van Meer G, Holthuis JCM (2000) Sphingolipid transport in eukaryotic cells. Biochim Biophys Acta Mol Cell Biol Lipid 1486:145–170

    Google Scholar 

  • Zicha J, Kunes J, Devynck MA (1999) Abnormalities of membrane function and lipid metabolism in hypertension. Am J Hypertens 12:315–331

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by the Ministry of Science of the Republic of Serbia (grants 143007B and 143016B).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Ajdžanović.

Additional information

Vladimir Ajdžanović and Ivan Spasojević contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajdžanović, V., Spasojević, I., Šošić-Jurjević, B. et al. The Negative Effect of Soy Extract on Erythrocyte Membrane Fluidity: An Electron Paramagnetic Resonance Study. J Membrane Biol 239, 131–135 (2011). https://doi.org/10.1007/s00232-010-9332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9332-8

Keywords

Navigation