Skip to main content
Log in

Construction of the Witten–Reshetikhin–Turaev TQFT from conformal field theory

  • Published:
Inventiones mathematicae Aims and scope

Abstract

In Andersen and Ueno (J Knot Theory Ramif 16:127–202, 2007) we constructed the vacua modular functor based on the sheaf of vacua theory developed in Tsuchiya et al. (Adv Stud Pure Math 19:459–566, 1989) and the abelian analog in Andersen and Ueno (Int J Math 18:919–993, 2007). We here provide an explicit isomorphism from the modular functor underlying the skein-theoretic model for the Witten–Reshetikhin–Turaev TQFT due to Blanchet, Habbeger, Masbaum and Vogel to the vacua modular functor. This thus provides a geometric construction of the TQFT first proposed by Witten and constructed first by Reshetikhin–Turaev from the quantum group \(U_q(\text{ sl }(N))\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Please see the discussion following this theorem for the proper interpretation of this property.

References

  1. Aiston, A.K.: Skein theoretic idempotents of Hecke algebras and quantum group invariants. Ph.D. Thesis, University of Liverpool, Liverpool (1996)

  2. Aiston, A.K., Morton, H.R.: Idempotents of Hecke algebras of type A. J. Knot Theory Ramif. 7, 463–487 (1998)

    Article  MathSciNet  Google Scholar 

  3. Andersen, J.E.: The Witten–Reshetikhin–Turaev invariants of finite order mapping tori I. J. Reine und angevantes Matematik 681, 1–36 (2013). (Aarhus University preprint 1995)

    Article  Google Scholar 

  4. Andersen, J.E., Masbaum, G.: Involutions on moduli spaces and refinements of the Verlinde formula. Math. Ann. 314, 291–326 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andersen, J.E.: Asymptotic faithfulness of the quantum \(SU(n)\) representations of the mapping class groups. Ann. Math. 163, 347–368 (2006)

    Article  MATH  Google Scholar 

  6. Andersen, J.E., Grove, J.: Fixed varieties in the moduli space of semi-stable vector bundles. Oxf. Q. J. Math. 57, 1–35 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andersen, J.E., Masbaum, G., Ueno, K.: Topological quantum field theory and the Nielsen–Thurston classification of \(M(0,4)\). Math. Proc. Camb. Philos. Soc. 141, 477–488 (2006)

    Article  MathSciNet  Google Scholar 

  8. Andersen, J.E., Ueno, K.: Abelian conformal field theories and determinant bundles. Int. J. Math. 18, 919–993 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Andersen, J.E., Ueno, K.: Geometric construction of modular functors from conformal field theory. J. Knot Theory Ramif. 16, 127–202 (2007)

    Article  MathSciNet  Google Scholar 

  10. Andersen, J.E.: The Nielsen–Thurston classification of mapping classes is determined by TQFT. J. Math. Kyoto Univ. 48(2), 323–338 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Andersen, J.E.: Asymptotics of the Hilbert–Schmidt norm in TQFT. Lett. Math. Phys. 91, 205–214 (2010)

    Article  MathSciNet  Google Scholar 

  12. Andersen, J.E.: Toeplitz operators and Hitchin’s connection. In: Bourguignon, J.P., Garcia-Prada, O., Salamon, S. (eds.) The many facets of geometry: a tribute to Nigel Hitchin. Oxford University Press, Oxford (2010)

  13. Andersen, J.E., Gammelgaard, N.L.: Hitchin’ s projectively flat connection, Toeplitz operators and the asymptotic expansion of TQFT curve operators. In: Grassmannians, Moduli Spaces and Vector Bundles, pp. 1–24. Clay Mathematics Proceedings, vol. 14. American Mathematical Society, Providence (2011)

  14. Andersen, J.E., Blaavand, J.: Asymptotics of Toeplitz operators and applications in TQFT. Traveaux Mathématiques 19, 167–201 (2011)

    MathSciNet  Google Scholar 

  15. Andersen, J.E., Ueno, K.: Modular functors are determined by their genus zero data. Quantum Topol. 3(3–4), 255–291 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Andersen, J.E., Himpel, B.: The Witten–Reshetikhin–Turaev invariants of finite order mapping tori II. Quantum Topol. 3, 377–421 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Andersen, J.E.: Mapping Class Groups do not have Kazhdan’s Property (T). arXiv:0706.2184

  18. Andersen, J.E.: Mapping class group invariant unitarity of the Hitchin connection over Teichmüller space. arXiv:1206.2635

  19. Andersen, J.E.: A geometric formula for the Witten–Reshetikhin–Turaev quantum invariants and some applications. arXiv:1206.2785

  20. Atiyah, M.F.: On framings of 3-manifolds. Topology 29, 1–7 (1990)

    Article  MathSciNet  Google Scholar 

  21. Atiyah, M.F.: The geometry and physics of knots. In: Lezioni Lincee [Lincei Lectures]. Cambridge University Press, Cambridge (1990)

  22. Bakalov, B., Jr., Kirillov, A.A: Lectures on tensor categories and modular functors. In: University Lecture Series, vol. 21. American Mathematical Society, Providence (2001)

  23. Blanchet, C.: Hecke algebras, modular categories and \(3\)-manifolds quantum invariants. Topology 39(1), 193–223 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Blanchet, C., Habegger, N., Masbaum, G., Vogel, P.: Three-manifold invariants derived from the Kauffman bracket. Topology 31(4), 685–699 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Blanchet, C., Habegger, N., Masbaum, G., Vogel, P.: Topological quantum field theories derived from the Kauffman bracket. Topology 34(4), 883–927 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Funar, L.: On the TQFT representations of the mapping class group. Pac. J. Math. 188, 251–274 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Freyd, P., Yetter, D., Horste, J., Lickorish, W.B.R., Millett, K.C., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. AMS 12, 239–335 (1985)

    Article  MATH  Google Scholar 

  28. Grove, J.: Constructing TQFTs from modular functors. J. Knot Theory Ramif. 10(8), 1085–1131 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gyoja, A.: A q-analogue of Young symmetriser. Osaka J. Math. 23, 841–852 (1986)

    MathSciNet  MATH  Google Scholar 

  30. Hitchin, N.J.: Flat connections and geometric quantization. Comm. Math. Phys. 131, 347–380 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jones, V.F.R.: Hecke algebra representations of braid groups. Ann. Math. 126, 335–388 (1987)

    Article  MATH  Google Scholar 

  32. Kanie, Y.: Conformal field theory and the braid group. Bull. Fac. Edu. Mie Univ. 40, 1–43 (1989)

    Google Scholar 

  33. Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal field theory on Riemann surfaces. Comm. Math. Phys. 116, 247–308 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kontsevich, M.: Rational conformal field theory and invariants of 3-manifolds. Preprint of Centre de Physique Theorique Marseille, CPT-88/p2189 (1988)

  35. Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess–Zumino model in two dimensions. Nucl. Phys. B 247, 83–103 (1984)

    Article  MathSciNet  Google Scholar 

  36. Kohno, T.: Three-manifold invariants derived from conformal field theory and projective representations of modular groups. Int. J. Mod. Phys. 6, 1795–1805 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Laszlo, Y.: Hitchin’s and WZW connections are the same. J. Diff. Geom. 49(3), 547–576 (1998)

  38. Laszlo, Y., Pauly, C., Sorger, C.: On the monodromy of the Hitchin connection. J. Geom. Phys. 64, 64–78 (2013)

  39. Lickorish, W.B.R.: Sampling the \(SU(N)\) invariants of three-manifolds. J. Knot Theory Ramif. 6, 45–60 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lickorish, W.B.R.: Skeins, \(SU(N)\) three-manifold invariants and TQFT. Comment. Math. Helv. 75, 45–64 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Masbaum, G.: An element of infinite order in TQFT-representations of mapping class groups. In: Low-Dimensional Topology (Funchal, 1998), pp. 137–139. Contemporary Mathematics, vol. 233. American Mathematical Society, Providence (1999)

  42. Moore, G., Seiberg, N.: Polynomial equations for rational conformal field theories. Phys. Lett. B 212, 451–460 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Comm. Math. Phys. 123, 177–254 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Reshetikhin, N., Turaev, V.: Ribbon graphs and their invariants derived fron quantum groups. Comm. Math. Phys. 127, 1–26 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Reshetikhin, N., Turaev, V.: Invariants of \(3\)-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Segal, G.: Topology, geometry and quantum field theory, pp. 421–577. In: Lecture Note Series, vol. 308. London Mathematical Society, London (2004)

  47. Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory on \( \mathbb{P}^1\) and monodromy representations of Braid group. Adv. Stud. Pure Math. 16, 297–326 (1988)

    MathSciNet  MATH  Google Scholar 

  48. Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Stud. Pure Math. 19, 459–566 (1989)

    MathSciNet  Google Scholar 

  49. Turaev, V.: Quantum Invariants of Knots and 3-Manifolds. De Gruyter studies in Mathematics, vol. 18. W. de Gruyter, Berlin (1994)

  50. Turaev, V., Wenzl, H.: Quantum invariants of 3-manifolds associated with classical simple Lie algebras. Int. J. Math. 4, 323–358 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Turaev, V., Wenzl, H.: Semisimple and modular categories from link invariants. Masthematische Annalen 309, 411–461 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ueno, K.: On conformal field theory. Lecture Note, vol. 208, pp. 283–345. London Mathematical Society, London (1995)

  53. Ueno, K.: Introduction to conformal field theory with gauge symmetries. In: Geometry and Physics (Aarhus, 1995). Lecture Notes in Pure and Applied Mathematics, vol. 184, pp. 603–745. Dekker, New York (1997)

  54. Ueno, K.: Conformal field theory with gauge symmetry. In: Fields Institute Monographs, vol. 24. American Mathematical Society, Providence; Fields Institute for Research in Mathematical Sciences, Toronto (2008)

  55. Ueno, K.: Conformal field theory and modular functor. In: Advances in Algebra and Combinatorics, pp. 335–352. World Scientific Publications, Hackensack (2008)

  56. Verlinde, E.: Fusion rules and modular transformations in \(2\)d conformal field theory. Nucl. Phys. B 300(FS22), 360–376 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  57. Walker, K.: On Witten’s 3-manifold invariants. Preliminary version # 2 (1991, preprint)

  58. Wall, C.T.C.: Non-additivity of the signature. Invent. Math. 7, 269–274 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wenzl, H.: Hecke algebra of type \(A_n\) and subfactors. Invent. Math. 92, 349–383 (1988)

    Article  MathSciNet  Google Scholar 

  60. Wenzl, H.: Braids and invariants of 3-manifolds. Invent. Math. 114, 235–275 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  61. Witten, E.: Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121, 351–399 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yokota, Y.: Skeins and quantum \(SU(N)\) invariants of \(3\)-manifolds. Math. Ann. 307, 109–138 (1997)

Download references

Acknowledgments

We thank Christian Blanchet, Yukihiro Kanie, Gregor Masbaum, Akihiro Tsuchiya and Yasuhiko Yamada for valuable discussions and the referee for several helpful comments which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørgen Ellegaard Andersen.

Additional information

Supported in part by the center of excellence grant “Center for quantum geometry of Moduli Spaces” from the Danish National Research Foundation and by Grant-in-Aid for Scientific Research No. 19340007 from JSPS (Japan Society for the Promotion of Science).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, J.E., Ueno, K. Construction of the Witten–Reshetikhin–Turaev TQFT from conformal field theory. Invent. math. 201, 519–559 (2015). https://doi.org/10.1007/s00222-014-0555-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0555-7

Navigation