Skip to main content
Log in

Rapid colorimetric detection of Salmonella typhimuriumusing a selective filtration technique combined with antibody–magnetic nanoparticle nanocomposites

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Detection of pathogenic bacteria that pose a great risk to human health requires a rapid, convenient, reliable, and sensitive detection method. In this study, we developed a selective filtration method using monoclonal antibody (MAb)–magnetic nanoparticle (MNP) nanocomposites for the rapid and sensitive colorimetric detection of Salmonella typhimurium. The method contains two key steps: the immunomagnetic separation of the bacteria using MAb–MNP nanocomposites and the filtration of the nanocomposite-bound bacteria. Color signals from the nanocomposites remaining on the membrane were measured, which reflected the amount of bacteria in test samples. Immunomagnetic capture efficiencies of 8 to 90 % for various concentrations of the pathogen (2 × 104–2 × 101 cells) were obtained. After optimization of the method, 2 × 101 cells of S. typhimurium in pure culture solution was detectable as well as in artificially inoculated vegetables (100 cells/g). The method was confirmed to be highly specific to S. typhimurium without cross-reaction to other pathogenic bacteria and could be concluded within 45 min, yielding results in a shorter or similar time period as compared with recently reported antibody immobilized on magnetic-particle-based methods. This study also demonstrated direct application of MAb–MNP nanocomposites without a dissociation step of bacteria from magnetic beads in colorimetric assays in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Joo J, Yim C, Kwon D, Lee J, Shin HH, Cha HJ, Jeon S (2012) Analyst 137:3609–3612

    Article  CAS  Google Scholar 

  2. WHO (2011) Food safety and food borne illness. <http://www.who.int/mediacentre/factsheets/fs237/en/>

  3. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H (2010) Int J Food Microbiol 139:S3–S15

    Article  Google Scholar 

  4. Crump JA, Mintz ED (2010) Clin Infect Dis 50:241–246

    Article  Google Scholar 

  5. Crump JA, Luby SP, Mintz ED (2004) Bull World Health Organ 82:346–353

    Google Scholar 

  6. Singh G, Vajpayee P, Rani N, Jyoti A, Gupta KC, Shanker R (2012) Ecotoxicol Environ Safe 78:320–326

    Article  CAS  Google Scholar 

  7. Liu Y, Che Y, Li Y (2001) Sensors Actuat B 72:214–218

    Article  CAS  Google Scholar 

  8. Ko S, Grant SA (2006) Biosens Bioelectron 21:1283–1290

    Article  CAS  Google Scholar 

  9. Yang ZY, Shim WB, Kim KY, Chung DH (2010) J Agric Food Chem 58:7135–7140

    Article  CAS  Google Scholar 

  10. Jadeja R, Janes ME, Simonson JG (2010) J Food Protect 73:1288–1293

    CAS  Google Scholar 

  11. De Lamo-Castellvi S, Manning A, Rodriguez-Saona LE (2010) Analyst 135:2987–2992

    Article  Google Scholar 

  12. Shin J, Kim M (2008) J Microbiol Biotechnol 18:1689–1694

    CAS  Google Scholar 

  13. Shim WB, Choi JG, Kim JY, Yang ZY, Lee KH, Kim MG, Ha SD, Kim KS, Kim KY, Kim CH, Eremin SA, Chung DH (2008) J Food Protect 71:781–789

    CAS  Google Scholar 

  14. Guven B, Basaran-Akgul N, Temur E, Tamer U, Boyaci IH (2011) Analyst 136:740–748

    Article  CAS  Google Scholar 

  15. Wen CY, Hu J, Zhang ZL, Tian ZQ, Ou GP, Liao YL, Li Y, Xie M, Sun ZY, Pang DW (2013) Anal Chem 85:1223–1230

    Article  CAS  Google Scholar 

  16. Sung YJ, Suk HJ, Sung HY, Li T, Poo H, Kim MG (2013) Biosens Bioelectron 43:432–439

    Article  CAS  Google Scholar 

  17. Yang Y, Xu F, Xu H, Aguilar ZP, Niu R, Yuan Y, Sun J, You X, Lai W, Xiong Y, Wan C, Wei H (2013) Food Microbiol 34:418–424

    Article  CAS  Google Scholar 

  18. Liébana S, Lermo A, Compoy S, Barbé J, Alegret S, Pividori MI (2009) Anal Chem 81:5812–5820

    Article  Google Scholar 

  19. Preechakasedkit P, Pinwattana K, Dungchai W, Siangproh W, Chaicumpa W, Tongtawe P, Chailapakul O (2012) Biosens Bioelectron 31:562–566

    Article  CAS  Google Scholar 

  20. Wang L, Wu CS, Fan X, Mustapha A (2012) Int J Food Microbiol 156:83–87

    Article  CAS  Google Scholar 

  21. Afonso AS, Perez-Lopez B, Faria RC, Mattoso LH, Hernandez-Herrero M, Roig-Sagues AX, Maltez-da Costa M, Merkoci A (2013) Biosens Bioelectron 40:121–126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grants from the NLRL Program (2001-0028915) and the Converging Research Center Program (2013K000242) through the National Research Foundation of Korea (NRF) funded by the Korean Ministry of Science, ICT & Future Planning and by the Fishery Commercialization Technology Development Program, Korean Ministry of Oceans and Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Gon Kim.

Additional information

Won-Bo Shim and Jeong-Eon Song contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 351 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, WB., Song, JE., Mun, H. et al. Rapid colorimetric detection of Salmonella typhimuriumusing a selective filtration technique combined with antibody–magnetic nanoparticle nanocomposites. Anal Bioanal Chem 406, 859–866 (2014). https://doi.org/10.1007/s00216-013-7497-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7497-6

Keywords

Navigation