Skip to main content
Log in

Aptasensor for ampicillin using gold nanoparticle based dual fluorescence–colorimetric methods

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A gold nanoparticle based dual fluorescence–colorimetric method was developed as an aptasensor to detect ampicillin using its single-stranded DNA (ssDNA) aptamer, which was discovered by a magnetic bead-based SELEX technique. The selected aptamers, AMP4 (5′-CACGGCATGGTGGGCGTCGTG-3′), AMP17 (5′-GCGGGCGGTTGTATAGCGG-3′), and AMP18 (5′-TTAGTTGGGGTTCAGTTGG-3′), were confirmed to have high sensitivity and specificity to ampicillin (K d, AMP7 = 9.4 nM, AMP17 = 13.4 nM, and AMP18 = 9.8 nM, respectively). The 5′-fluorescein amidite (FAM)-modified aptamer was used as a dual probe for observing fluorescence differences and color changes simultaneously. The lower limits of detection for this dual method were a 2 ng/mL by fluorescence and a 10 ng/mL by colorimetry for ampicillin in the milk as well as in distilled water. Because these detection limits were below the maximum residue limit of ampicillin, this aptasensor was sensitive enough to detect antibiotics in food products, such as milk and animal tissues. In addition, this dual aptasensor will be a more accurate method for antibiotics in food products as it concurrently uses two detection methods: fluorescence and colorimetry.

The dual fluorescence-colorimetric method for the detection of ampicillin using the AMP17 ssDNA aptamer. The FAM-AMP17 aptamer is quenched by adsorption onto the surface of the AuNPs. If ampicillin and salt (NaCl) are added to the solution, fluorescence is recovered and the AuNPs aggregate. Conversely, the AuNP solution treated with only salt shows no obvious changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peng X, Tan J, Tang C, Yu Y, Wang Z (2008) Environ Toxicol Chem 27:73–79

    Article  CAS  Google Scholar 

  2. Popelka P, Nagy J, Popelka P, Marcincak S, Jevinova P, Hussein K (2003) Folia Veterinaria 47:139–141

    CAS  Google Scholar 

  3. Furusawa N (2000) J Chromatogr A 898:185–191

    Article  CAS  Google Scholar 

  4. Kurittu J, Lönnberg S, Virta M, Karp M (2000) J Agric Food Chem 48:3372–3377

    Article  CAS  Google Scholar 

  5. Luo W, Ang CY, Thompson HC Jr (1997) J Chromatogr B 694:401–407

    Article  CAS  Google Scholar 

  6. Nelis HJ, Vandenbranden J, Verhaeghe B, De Kruif A, Mattheeuws D, De Leenheer AP (1992) Antimicrob Agents Chemother 36:1606–1610

    CAS  Google Scholar 

  7. Okerman L, De Wasch K (1998) Van Hoof. J Analyst 123:2361–2365

    Article  CAS  Google Scholar 

  8. Cho EJ, Lee JW, Ellington AD (2009) Annu Rev Anal Chem 2:241–264

    Article  CAS  Google Scholar 

  9. Ferapontova EE, Olsen EM, Gothelf KV (2008) J Am Chem Soc 130:4256–4258

    Article  CAS  Google Scholar 

  10. Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC (2008) Trends Biotechnol 26:442–449

    Article  CAS  Google Scholar 

  11. Min K, Cho M, Han SY, Shim YB, Ku J, Ban C (2008) Biosens Bioelectron 23:1819–1824

    Article  CAS  Google Scholar 

  12. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) J Am Chem Soc 126:11768–11769

    Article  CAS  Google Scholar 

  13. Pestourie C, Tavitian B, Duconge F (2005) Biochimie 87:921–930

    Article  CAS  Google Scholar 

  14. Yan AC, Levy M (2009) RNA Biol 6:316–320

    Article  CAS  Google Scholar 

  15. Li L, Zhao H, Chen Z, Mu X, Guo L (2010) Anal Bioanal Chem 398:563–70

    Article  CAS  Google Scholar 

  16. Burke DH, Hoffman DC, Brown A, Hansen M, Pardi A, Gold L (1997) Chem Biol 4:833–843

    Article  CAS  Google Scholar 

  17. Kwon M, Chun SM, Jeong S, Yu J (2001) Mol Cells 11:303–311

    CAS  Google Scholar 

  18. Niazi JH, Lee SJ, Kim YS, Gu MB (2008) Bioorg Med Chem 16:1254–1261

    Article  CAS  Google Scholar 

  19. Mann D, Reinemann C, Stoltenburg R, Strehlitz B (2005) Biochem Biophys Res Commun 338:1928–1934

    Article  CAS  Google Scholar 

  20. Stoltenburg R, Reinemann C, Strehlitz B (2005) Anal Bioanal Chem 383:83–91

    Article  CAS  Google Scholar 

  21. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Angew Chem Int Ed Engl 49:3280–3294

    CAS  Google Scholar 

  22. Li L, Li B, Qi Y, Jin Y (2009) Anal Bioanal Chem 393:2051–2057

    Article  CAS  Google Scholar 

  23. Li F, Zhang J, Cao X, Wang L, Li D, Song S, Ye B, Fan C (2009) Analyst 134:1355–1360

    Article  CAS  Google Scholar 

  24. Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C (2011) Anal Biochem 415:175–181

    Article  CAS  Google Scholar 

  25. Thaxton CS, Georganopoulou DG, Mirkin CA (2006) Clin Chim Acta 363:120–126

    Article  CAS  Google Scholar 

  26. Yang C, Wang Y, Marty JL, Yang X (2011) Biosens Bioelectron 26:2724–2727

    Article  CAS  Google Scholar 

  27. Beni V, Hayes K, Lerga TM, O’Sullivan CK (2010) Biosens Bioelectron 26:307–313

    Article  CAS  Google Scholar 

  28. Cheng Y, Stakenborg T, Van Dorpe P, Lagae L, Wang M, Chen H, Borghs G (2011) Anal Chem 83:1307–1314

    Article  CAS  Google Scholar 

  29. Wang H, Wang Y, Jin J, Yang R (2008) Anal Chem 80:9021–9028

    Article  CAS  Google Scholar 

  30. Wang W, Chen C, Qian M, Zhao XS (2008) Anal Biochem 373:213–219

    Article  CAS  Google Scholar 

  31. Luo Y, Liao F, Lu W, Chang G, Sun X (2011) Nanotechnology 22:195502

    Article  Google Scholar 

  32. Satishkumar BC, Brown LO, Gao Y, Wang CC, Wang HL, Doorn SK (2007) Nat Nanotechnol 2:560–564

    Article  CAS  Google Scholar 

  33. Queiroz AC, Santos JD, Monteiro FJ, Gibson IR, Knowles JC (2001) Biomaterials 22:1393–1400

    Article  CAS  Google Scholar 

  34. Paul A, Avci-Adali M, Ziemer G, Wendel HP (2009) Oligonucleotides 19:243–254

    Article  CAS  Google Scholar 

  35. Cho M, Xiao Y, Nie J, Stewart R, Csordas AT, Oh SS, Thomson JA, Soh HT (2010) Proc Natl Acad Sci USA 107:15373–15378

    Article  CAS  Google Scholar 

  36. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  37. Famulok M (1999) Curr Opin Struct Biol 9:324–329

    Article  CAS  Google Scholar 

  38. Kim DM, Rahman MA, Do MH, Ban C, Shim YB (2010) Biosens Bioelectron 25:1781–1788

    Article  CAS  Google Scholar 

  39. Kim YJ, Kim YS, Niazi JH, Gu MB (2010) Bioprocess Biosyst Eng 33:31–37

    Article  CAS  Google Scholar 

  40. Lévesque D, Beaudoin JD, Roy S, Perreault JP (2007) Biochem J 403:129–138

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-20100019914, 20110013431) and KOSEF through Center for Electro-Photo Behaviors in Advanced Molecular Systems (20110007166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changill Ban.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 463 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, KM., Jeong, E., Jeon, W. et al. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence–colorimetric methods. Anal Bioanal Chem 402, 2153–2161 (2012). https://doi.org/10.1007/s00216-011-5662-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5662-3

Keywords

Navigation