Skip to main content
Log in

A compact miniaturized continuous flow system for the determination of urea content in milk

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A multicommutation-based flow system with photometric detection was developed, employing an analytical microsystem constructed with low temperature co-fired ceramics (LTCC) technology, a solid-phase reactor containing particles of Canavalia ensiformis DC (urease source) immobilized with glutaraldehyde, and a mini-photometer coupled directly to the microsystem which monolithically integrates a continuous flow cell. The determination of urea in milk was based on the hydrolysis of urea in the solid-phase reactor and the ammonium ions produced were monitored using the Berthelot reaction. The analytical curve was linear in the urea concentration range from 1.0 × 10−4 to 5.0 × 10−3 mol L−1 with a limit of detection of 8.0 × 10−6 mol L−1. The relative standard deviation (RSD) for a 2.0 × 10−3 mol L−1 urea solution was lower than 0.4% (n = 10) and the sample throughput was 13 h−1. To check the reproducibility of the flow system, calibration curves were obtained with freshly prepared solutions on different days and the RSD obtained was 4.7% (n = 6). Accuracy was assessed by comparing the results of the proposed method with those from the official procedure and the data are in close agreement, at a 95% confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eicher R, Bouchard E, Bigras-Poulin M (1999) Prev Vet Med 39:53–63

    Article  CAS  Google Scholar 

  2. Kertz AF, Everett JP (1975) J Anim Sci 41:945–953

    CAS  Google Scholar 

  3. Gustafsson AH, Palmquist DL (1993) J Dairy Sci 76:475–484

    Article  CAS  Google Scholar 

  4. Trivedi UB, Lakshminarayana D, Kothari IL, Patel NG, Kapse HN, Makhija KK, Patel RB, Panchal CJ (2009) Sens Actuators B 140:260–266

    Article  Google Scholar 

  5. Hojman D, Kroll O, Adin G, Gips M, Hanochi B, Ezra E (2004) J Dairy Sci 87:1001–1011

    Article  CAS  Google Scholar 

  6. Ibáñez-García N, Gonçalves RDM, da Rocha ZM, Gongora-Rubio MR, Seabra AC, Chamarro JA (2006) Sens Actuators B 118:67–72

    Article  Google Scholar 

  7. Ibáñez-García N, Mercader MB, da Rocha ZM, Seabra CA, Gongora-Rubio MR, Chamarro JA (2006) Anal Chem 78:2985–2992

    Article  Google Scholar 

  8. Gongora-Rubio MR, Espinoza-Vallejos P, Sola-Laguna L, Santiago-Avilés JJ (2001) Sens Actuators A 89:222–241

    Article  Google Scholar 

  9. Baeza M, Lopez C, Alonso J, Lopez-Santin J, Alvaro G (2010) Anal Chem 82:1006–1011

    Article  CAS  Google Scholar 

  10. Martínez-Cisneros CS, da Rocha Z, Ferreira M, Valdes F, Seabra A, Gongora-Rubio M, Chamarro JA (2009) Anal Chem 81:7448–7453

    Article  Google Scholar 

  11. Clark S, Francis PS, Conlan XA, Barnett NW (2007) J Chromatogr A 1161:207–213

    Article  CAS  Google Scholar 

  12. Francis PS (2006) Grape Aust J Wine Res 12:97–106

    Article  CAS  Google Scholar 

  13. Lambert DF, Sherwood JE, Francis PS (2004) Aust J Soil Res 42:709–717

    Article  CAS  Google Scholar 

  14. Raimundo IM, Pasquini C (1997) Analyst 122:1039–1044

    Article  CAS  Google Scholar 

  15. Grabowska I, Ksok E, Wyzkiewicz I, Chudy M (2009) Microchim Acta 164:299–305

    Article  CAS  Google Scholar 

  16. Baumgartner M, Flock M, Winter P, Luf P, Baumgartner W (2002) Acta Vet Hung 50:263–271

    Article  CAS  Google Scholar 

  17. de Faria LC, Pasquini C, Oliveira-Neto G (1991) Analyst 116:357–360

    Article  Google Scholar 

  18. Silva FV, Nogueira ARA, Souza GB, Reis BF, Araújo AN, Montenegro MCMBS, Lima JLFC (2000) Talanta 53:331–336

    Article  CAS  Google Scholar 

  19. Lima MJR, Fernandes SMV, Rangel A (2004) J Agric Food Chem 52:6887–6890

    Article  CAS  Google Scholar 

  20. Searle PL (1984) Analyst 109:549–568

    Article  CAS  Google Scholar 

  21. Luca GC, Reis BF (2001) Quim Nova 24:191–194

    CAS  Google Scholar 

  22. Rover-Júnior L, Oliveira-Neto G, Lima JLFC, Montenegro MCBSM, Silva VL (1997) Anal Sci 13:589–594

    Article  Google Scholar 

  23. Human do Brasil (2010) http://www.humandobrasil.com.br/. Accessed 5 Feb 2010

Download references

Acknowledgments

The authors are grateful to The National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), São Paulo State Research Foundation (FAPESP) for their financial support (2008/11151-1) and, National Institute of Science and Technology. This study was partially supported also by Ministerio de Ciencia e Innovación (Spain) through project CTQ2009-12128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willian Toito Suarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suarez, W.T., Pessoa-Neto, O.D., dos Santos, V.B. et al. A compact miniaturized continuous flow system for the determination of urea content in milk. Anal Bioanal Chem 398, 1525–1533 (2010). https://doi.org/10.1007/s00216-010-4052-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4052-6

Keywords

Navigation