Skip to main content
Log in

Cocaine potentiates MDMA-induced oxidative stress but not dopaminergic neurotoxicity in mice: implications for the pathogenesis of free radical-induced neurodegenerative disorders

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The drugs of abuse 3,4-methylenedioxymethamphetamine (MDMA; “ecstasy”) and cocaine both increase the generation of free radicals, and in the case of MDMA, this increase in oxidative stress is involved in the dopaminergic neurotoxicity produced by the drug in mice. Oxidative stress processes are also involved in the pathogenesis of several neurodegenerative diseases.

Objectives

We aimed to determine the consequences of the combined administration of MDMA and cocaine on oxidative stress and dopaminergic neurotoxicity.

Methods

Mice received MDMA (20 mg/kg, i.p.; two doses separated by 3 h) followed by cocaine 1, 3, 6, or 24 h after the second MDMA dose. Mice were killed between 1 h and 7 days after cocaine injection.

Results

MDMA decreased dopamine transporter density and dopamine concentration 7 days later. Cocaine did not alter this neurotoxicity. MDMA produced an increase in the concentration of 2,3-dihydroxybenzoic acid in striatal microdialysis samples and an increase in lipid peroxidation in the striatum which were potentiated by cocaine. MDMA and cocaine given together also increased nitrate and 3-nitrotyrosine levels compared with either drug given alone. On the other hand, MDMA increased superoxide dismutase activity and decreased catalase activity, changes which were prevented by cocaine administration. In addition, cocaine administration produced an increase in glutathione peroxidase (GPx) activity in both saline-treated and MDMA-treated mice.

Conclusions

Cocaine potentiates MDMA-induced oxidative stress but does not produce an increase in the neurotoxicity produced by MDMA, and this lack of potentiation may involve an increase in GPx activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bagetta G, Rodino P, Arabia A, Massoud R, Paoletti AM, Nistico R, Passantino L, Preziosi P (1999) Systemic administration of cocaine, given alone or in combination with sensory stimuli, differentially affects l-arginine-nitric oxide metabolism in discrete regions of the brain of rat. Neurosci Lett 266(3):153–156

    Article  PubMed  CAS  Google Scholar 

  • Barbosa DJ, Capela JP, Oliveira JM, Silva R, Ferreira LM, Siopa F, Branco PS, Fernandes E, Duarte JA, de Lourdes BM, Carvalho F (2012) Pro-oxidant effects of ecstasy and its metabolites in mouse brain synaptosomes. Br J Pharmacol 165(4b):1017–1033

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Ladenheim B, Hirata H, Rothman RB, Ali S, Carlson E, Epstein C, Moran TH (1995) Superoxide radicals mediate the biochemical effects of methylenedioxymethamphetamine (MDMA): evidence from using CuZn-superoxide dismutase transgenic mice. Synapse 21(2):169–176

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Brannock C (1998) Free radicals and the pathobiology of brain dopamine systems. Neurochem Int 32(2):117–131

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Thiriet N, Jayanthi S (2001) Involvement of free radicals in MDMA-induced neurotoxicity in mice. Ann Med Interne (Paris) 52(3):IS57–IS59

    Google Scholar 

  • Camarero J, Sanchez V, O’Shea E, Green AR, Colado MI (2002) Studies, using in vivo microdialysis, on the effect of the dopamine uptake inhibitor GBR 12909 on 3,4-methylenedioxymethamphetamine (‘ecstasy’)-induced dopamine release and free radical formation in the mouse striatum. J Neurochem 81(5):961–972

    Article  PubMed  CAS  Google Scholar 

  • Chiueh CC, Krishna G, Tulsi P, Obata T, Lang K, Huang SJ, Murphy DL (1992) Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autooxidation in the caudate nucleus: effect of MPP+. Free Rad Biol Med 13:581–583

    Article  PubMed  CAS  Google Scholar 

  • Colado MI, Camarero J, Mechan AO, Sanchez V, Esteban B, Elliott JM, Green AR (2001) A study of the mechanisms involved in the neurotoxic action of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) on dopamine neurones in mouse brain. Br J Pharmacol 134(8):1711–1723

    Article  PubMed  CAS  Google Scholar 

  • Colado MI, O’Shea E, Green AR (2004) Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology (Berl) 173(3–4):249–263

    Article  CAS  Google Scholar 

  • Das NP, Ratty AK (1987) Studies on the effects of the narcotic alkaloids, cocaine, morphine, and codeine on nonenzymatic lipid peroxidation in rat brain mitochondria. Biochem Med Metab Biol 37(2):258–264

    Article  PubMed  CAS  Google Scholar 

  • Dietrich JB, Mangeol A, Revel MO, Burgun C, Aunis D, Zwiller J (2005) Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. Neuropharmacology 48(7):965–974

    Article  PubMed  CAS  Google Scholar 

  • Docherty JR, Green AR (2010) The role of monoamines in the changes in body temperature induced by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and its derivatives. Br J Pharmacol 160(5):1029–1044

    Article  PubMed  CAS  Google Scholar 

  • EMCDDA (2010) Annual report on the state of the drugs problem in Europe. Publications of the European Union

  • EMCDDA (2009) Polydrug use: patterns and responses. Publications of the European Union

  • Escobedo I, O’Shea E, Orio L, Sanchez V, Segura M, de la Torre R, Farre M, Green AR, Colado M (2005) A comparative study on the acute and long-term effects of MDMA and 3,4-dihydroxymethamphetamine (HHMA) on brain monoamine levels after i.p. or striatal administration in mice. Br J Pharmacol 144:231–241

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Giovanni A, Liang LP, Hastings TG, Zigmond MJ (1995) Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. J Neurochem 64(4):1819–1825

    Article  PubMed  CAS  Google Scholar 

  • Granado N, Escobedo I, O’Shea E, Colado I, Moratalla R (2008a) Early loss of dopaminergic terminals in striosomes after MDMA administration to mice. Synapse 62:80–84

    Article  PubMed  CAS  Google Scholar 

  • Granado N, O’Shea E, Bove J, Vila M, Colado MI, Moratalla R (2008b) Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice. J Neurochem 107:1102–1112

    PubMed  CAS  Google Scholar 

  • Granado N, Ares-Santos S, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2011) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42(3):391–403

    Article  PubMed  CAS  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’). Pharmacol Rev 55:463–508

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Kaur H, Ingelman-Sundberg M (1991) Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautionary note. Free Radic Biol Med 10:439–441

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    Article  PubMed  CAS  Google Scholar 

  • Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34(2):145–169

    Article  PubMed  CAS  Google Scholar 

  • Izco M, Marchant I, Escobedo I, Peraile I, Delgado M, Higuera-Matas A, Olias O, Ambrosio E, O’Shea E, Colado MI (2007) Mice with decreased cerebral dopamine function following a neurotoxic dose of MDMA (3,4-methylenedioxymethamphetamine, ‘ecstasy’) exhibit increased ethanol consumption and preference. J Pharmacol Exp Ther 322:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Itzhak Y (1997) Modulation of cocaine- and methamphetamine-induced behavioral sensitization by inhibition of brain nitric oxide synthase. J Pharmacol Exp Ther 282(2):521–527

    PubMed  CAS  Google Scholar 

  • Itzhak Y, Ali SF, Martin JL, Black MD, Huang PL (1998) Resistance of neuronal nitric oxide synthase-deficient mice to cocaine-induced locomotor sensitization. Psychopharmacology (Berl) 140(3):378–386

    Article  CAS  Google Scholar 

  • Jayanthi S, Ladenheim B, Andrews AM, Cadet JL (1999) Overexpression of human copper/zinc superoxide dismutase in transgenic mice attenuates oxidative stress caused by methylenedioxymethamphetamine (ecstasy). Neuroscience 91(4):1379–1387

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, Shvedova AA, Kisin E, O’Callaghan JP, Kommineni C, Miller DB (2002) d-MDMA during vitamin E deficiency: effects on dopaminergic neurotoxicity and hepatotoxicity. Brain Res 933(2):150–163

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA (2013) The hidden side of drug action: brain temperature changes induced by neuroactive drugs. Psychopharmacology (Berl) 225(4):765–780

    Article  CAS  Google Scholar 

  • Lee DK, Ahn SM, Shim YB, Koh WC, Shim I, Choe ES (2011) Interactions of dopamine D1 and N-methyl-d-aspartate receptors are required for acute cocaine-evoked nitric oxide efflux in the dorsal striatum. Exp Neurobiol 20(2):116–122

    Article  PubMed  Google Scholar 

  • Lowry OH, Roseborough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  • Mao GD, Thomas PD, Lopaschuk GD, Poznansky MJ (1993) Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity. J Biol Chem 268(1):416–420

    PubMed  CAS  Google Scholar 

  • Martín AB, Fernández-Espejo E, Ferrer B, Gorriti MA, Navarro M, Rodríguez de Fonseca F, Moratalla R (2008) Expression and function of CB1 receptor in the rat striatum: localization and effects on D1 and D2 dopamine receptor-mediated motor behaviors. Neuropsychopharmacology 33:1667–1679

    Article  PubMed  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5(1):62–71

    Article  PubMed  CAS  Google Scholar 

  • Narayan M, Berliner LJ, Merola AJ, Diaz PT, Clanton TL (1997) Biological reactions of peroxynitrite: evidence for an alternative pathway of salicylate hydroxylation. Free Radic Res 27(1):63–72

    Article  PubMed  CAS  Google Scholar 

  • O’Shea E, Esteban B, Camarero J, Green AR, Colado MI (2001) Effect of GBR 12909 and fluoxetine on the acute and long term changes induced by MDMA (‘ecstasy’) on the 5-HT and dopamine concentrations in mouse brain. Neuropharmacology 40(1):65–74

    Article  PubMed  Google Scholar 

  • Pekny M, Wilhelmsson U, Bogestal YR, Pekna M (2007) The role of astrocytes and complement system in neural plasticity. Int Rev Neurobiol 82:95–111

    Article  PubMed  CAS  Google Scholar 

  • Peraile I, Torres E, Mayado A, Izco M, Lopez-Jimenez A, Lopez-Moreno JA, Colado MI, O’Shea E (2010) Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice. Br J Pharmacol 159(1):201–211

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues TB, Granado N, Ortiz O, Cerdán S, Moratalla R (2007) Metabolic interactions between glutamatergic and dopaminergic neurotransmitter systems are mediated through D(1) dopamine receptors. J Neurosci Res 85:3284–3293

    Article  PubMed  CAS  Google Scholar 

  • Sammut S, West AR (2008) Acute cocaine administration increases NO efflux in the rat prefrontal cortex via a neuronal NOS-dependent mechanism. Synapse 62(9):710–713

    Article  PubMed  CAS  Google Scholar 

  • Sanchez V, Camarero J, Esteban B, Peter MJ, Green AR, Colado MI (2001) The mechanisms involved in the long-lasting neuroprotective effect of fluoxetine against MDMA (‘ecstasy’)-induced degeneration of 5-HT nerve endings in rat brain. Br J Pharmacol 134(1):46–57

    Article  PubMed  CAS  Google Scholar 

  • Sanchez V, Camarero J, O’Shea E, Green AR, Colado MI (2003) Differential effect of dietary selenium on the long-term neurotoxicity induced by MDMA in mice and rats. Neuropharmacology 44(4):449–461

    Article  PubMed  CAS  Google Scholar 

  • Segal DS, Kuczenski R, O’Neil ML, Melega WP, Cho AK (2003) Escalating dose methamphetamine pretreatment alters the behavioral and neurochemical profiles associated with exposure to a high-dose methamphetamine binge. Neuropsychopharmacology 28:1730–1740

    Article  PubMed  CAS  Google Scholar 

  • Sies H, Sharov VS, Klotz LO, Briviba K (1997) Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem 272(44):27812–27817

    Article  PubMed  CAS  Google Scholar 

  • Sies H, Klotz LO, Sharov VS, Assmann A, Briviba K (1998) Protection against peroxynitrite by selenoproteins. Z Naturforsch C 53(3–4):228–232

    PubMed  CAS  Google Scholar 

  • Simic I, Malicevic Z (2008) The acute effects of 3,4-methylenedioxymethamphetamine on oxidative stress in rat brain. Med Pregl 61(5–6):222–225

    Article  PubMed  Google Scholar 

  • Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM (2004) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 367(3):349–354

    Article  PubMed  CAS  Google Scholar 

  • Yorgason JT, Jones SR, España RA (2011) Low and high affinity dopamine transporter inhibitors block dopamine uptake within 5 sec of intravenous injection. Neuroscience 182:125–132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Ministerio de Ciencia e Innovación, Ministerio de Sanidad y Política Social, ISCIII, and Universidad Complutense-Comunidad de Madrid: SAF2006-07045, SAF2010-21529, PI070892, PNSD 3SI/04/01, Retics RTA RD06/0001/0006 and RD06/0001/1011, CIBERNED CB06/05/0055, and UCM-CAM 910258. IP and ET received predoctoral grants from Universidad Complutense de Madrid and Ministerio de Educación y Ciencia. NG was funded by a Juan de la Cierva postdoctoral contract from Ministerio de Ciencia e Innovación.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther O’Shea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peraile, I., Granado, N., Torres, E. et al. Cocaine potentiates MDMA-induced oxidative stress but not dopaminergic neurotoxicity in mice: implications for the pathogenesis of free radical-induced neurodegenerative disorders. Psychopharmacology 230, 125–135 (2013). https://doi.org/10.1007/s00213-013-3142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3142-5

Keywords

Navigation