Skip to main content
Log in

Greater vulnerability to the amnestic effects of ketamine in males

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Gender differences both in response to ketamine in animals and general cognitive functioning in humans have been observed and suggested to be related to modulatory effects of sex hormones on N-methyl-d-aspartate receptor (NMDA-R) functioning.

Objectives

The current study aimed to determine whether there were gender differences in response to ketamine in humans.

Methods

Behavioral data including positive and negative symptoms (Brief Psychiatric Rating Scale), perceptual alterations (Clinician-Administered Dissociative States Scale, CADSS), and “high” and “anxiety” states (Visual Analog Scale) from 295 subjects who participated in a total of 11 placebo-controlled ketamine studies were analyzed. In a subset of subjects, memory (Hopkins Verbal Learning Task: HVLT, n=108) and attention (continuous performance task, n=177) data were also analyzed.

Results

Male participants showed a greater performance decrement on the HVLT after ketamine administration compared to women. Men also reported a greater subjective sense of memory impairment on a CADSS subscale. No other gender differences in behavioral or cognitive measures were observed.

Conclusions

Men showed a greater vulnerability to the amnestic effects of ketamine than women. Possible explanations of these findings are neuroanatomical and cognitive differences in processing of words in men and women and interactions between sex hormones and NMDA-R function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams MM, Fink SE, Janssen WG, Shah RA, Morrison JH (2004) Estrogen modulates synaptic N-methyl-D-aspartate receptor subunit distribution in the aged hippocampus. J Comp Neurol 474:419–426

    Article  PubMed  CAS  Google Scholar 

  • Adler CM, Goldberg TE, Malhotra AK, Breier A (1998) Effects of ketamine on thought disorder, working memory and semantic memory in healthy volunteers. Biol Psychiatry 43:811–816

    Article  PubMed  CAS  Google Scholar 

  • Anand A, Charney DS, Oren DA, Berman RM, Hu XS, Cappiello A, Krystal JH (2000) Attenuation of the neuropsychiatric effects of ketamine with lamotrigine—support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch Gen Psychiatry 57:270–276

    Article  PubMed  CAS  Google Scholar 

  • Baxter LC, Saykin AJ, Flashman LA, Johnson SC, Guerin SJ, Babcock DR, Wishart HA (2003) Sex differences in semantic language processing: a functional MRI study. Brain Lang 84:264–272

    Article  PubMed  CAS  Google Scholar 

  • Blanchard DC, Blanchard RJ, Carborez Ade P, Veniegas R, Rodgers RJ, Shepherd JK (1992) MK-801 produces a reduction in anxiety-related antipredator defensiveness in male and female rats and a gender-dependent increase in locomotor behavior. Psychopharmacology 108:352–362

    Article  PubMed  CAS  Google Scholar 

  • Bleecker ML, Bolla-Wilson K, Agnew J, Meyers DA (1988) Age-related sex differences in verbal memory. J Clin Psychol 44:403–411

    Article  PubMed  CAS  Google Scholar 

  • Bovill JG, Coppell L, Dundee JW, Moore J (1971) Current status of ketamine anaesthesia. Lancet 297:1285

    Article  Google Scholar 

  • Bowers MB, Heninger GR, Sternberg D, Meltzer HY (1980) Clinical processes and central dopaminergic activity in psychotic disorders. Commun Psychopharmacol 4:177–188

    PubMed  Google Scholar 

  • Bremner JD, Krystal JD, Putman FW, Southwick SM, Marmar C, Charney DS, Mazure CM (1998) Measurement of dissociative states with the Clinician Administered Dissociative States Scale (CADDS). J Trauma Stress 11:125–136

    Article  PubMed  CAS  Google Scholar 

  • Cho HS, D’Souza DC, Gueorguieva R, Perry EB, Madonick S, Karper LP, Abi-Dargham A, Belger A, Abi-Saab W, Lipschitz D, Bennett A, Seibyl JP, Krystal JH (2005) Absence of behavioral sensitization in healthy human subjects following repeated exposure to ketamine. Psychopharmacology 179:136–143

    Article  PubMed  CAS  Google Scholar 

  • Colbourne F, Rakic D, Auer RN (1999) The effects of temperature and scopolamine on N-methyl-D-aspartate antagonist-induced neuronal necrosis in the rat. Neuroscience 90:87–94

    Article  PubMed  CAS  Google Scholar 

  • D’Souza DC, Gill R, Zuzarte E, Zimmerman L, Abi-Saab D, Damon D, White J, Krystal J (1999a) Glycine–ketamine interactions in healthy humans. Abstracts of the VIIth international congress on schizophrenia research, Santa Fe, New Mexico, USA. Schizophrenia Res 24:213

    Google Scholar 

  • D’Souza DN, Harlan RE, Garcia MM (1999b) Sexual dimorphism in the response to N-methyl-D-aspartate receptor antagonists and morphine on behavior and c-Fos induction in the rat brain. Neuroscience 93:1539–1547

    Article  PubMed  CAS  Google Scholar 

  • D’Souza DN, Harlan RE, Garcia MM (2002) Sexually dimorphic effects of morphine and MK-801: sex steroid-dependent and -independent mechanisms. J Appl Physiol 92:493–503

    PubMed  CAS  Google Scholar 

  • Foy MR, Xu J, Xie X, Brinton RD, Thompson RF, Berger TW (1999) 17beta-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. J Neurophysiol 81:925–929

    PubMed  CAS  Google Scholar 

  • Gazzaley AH, Weiland NG, McEwen BS, Morrison JH (1996) Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. J Neurosci 16:6830–6838

    PubMed  CAS  Google Scholar 

  • Giordano M, Mejia-Viggiano MC (2001) Gender differences in spontaneous and MK-801-induced activity after striatal lesions. Brain Res Bull 56:553–561

    Article  PubMed  CAS  Google Scholar 

  • Gordon M (1983) The Gordon diagnostic system. DeWitt, N.Y.

  • Gould E, Woolley CS, Frankfurt M, McEwen BS (1990) Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 10:1286–1291

    PubMed  CAS  Google Scholar 

  • Grace RF (2003) The effect of variable-dose diazepam on dreaming and emergence phenomena in 400 cases of ketamine-fentanyl anaesthesia. Anaesthesia 58:904–910

    Article  PubMed  CAS  Google Scholar 

  • Haberny KA, Paule MG, Scallet AC, Sistare FD, Lester DS, Hanig JP, Slikker W, Jr (2002) Ontogeny of the N-methyl-D-aspartate (NMDA) receptor system and susceptibility to neurotoxicity. Toxicol Sci 68:9–17

    Article  PubMed  CAS  Google Scholar 

  • Hampson E (1990) Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology 15:97–111

    Article  PubMed  CAS  Google Scholar 

  • Hedlund JL, Vieweg BW (1980) The brief psychiatric rating scale (BPRS): a comprehensive review. J Oper Psych 11:48–64

    Google Scholar 

  • Honack D, Loscher W (1993) Sex differences in NMDA receptor mediated responses in rats. Brain Res 620:167–170

    Article  PubMed  CAS  Google Scholar 

  • Honey GD, Honey RA, O’loughlin C, Sharar SR, Kumaran D, Suckling J, Menon DK, Sleator C, Bullmore ET (2005a) Ketamine disrupts frontal and hippocampal contribution to encoding and retrieval of episodic memory: an FMRI study. Cereb Cortex 15:749–759

    Article  PubMed  CAS  Google Scholar 

  • Honey G, Honey R, Sharar S, Turner D, Pomarol-Clotet E, Kumaran D, Simons J, Hu X, Rugg M, Bullmore E, Fletcher P (2005b) Impairment of specific episodic memory processes by sub-psychotic doses of ketamine: the effects of levels of processing at encoding and of the subsequent retrieval task. Psychopharmacology 181:445–457

    Article  PubMed  CAS  Google Scholar 

  • Jevtovic-Todorovic V, Wozniak D, Benshoff N, Olney J (2001) A comparative evaluation of the neurotoxic properties of ketamine and nitrous oxide. Brain Res 895:264–267

    Article  PubMed  CAS  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45:789–796

    PubMed  CAS  Google Scholar 

  • Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276

    PubMed  CAS  Google Scholar 

  • Kramer JH, Delis DC, Daniel M (1988) Sex differences in verbal learning. J Clin Psychol 44:907–915

    Article  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB, Charney DS (1994) Subanesthetic effects of the non-competitive NMDA-antagonist, ketamine, in humans. Arch Gen Psychiatry 51:199–214

    PubMed  CAS  Google Scholar 

  • Krystal JH, Petrakis IL, Webb E, Cooney NL, Karper LP, Namanworth S, Stetson P, Trevisan LA, Charney DS (1998a) Dose-related ethanol-like effects of the NMDA antagonist, ketamine, in recently detoxified alcoholics. Arch Gen Psychiatry 55:354–360

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Bennett A, D’Souza DC, Abi-Dargham A, Morrisey K, Charney DS (1998b) Interactive effects of subanesthetic ketamine and subhypnotic lorazepam in humans. Psychopharmacology 135:213–299

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, D’Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi-Saab D, Cassello K, Bowers MB, Vegso S, Heninger GR, Charney DS (1999) Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology 145:193–204

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Abi-Saab W, Perry E, DSouza DC, Liu N, Gueorguieva R, McDougall L, Hunsberger T, Belger A, Levine L, Breier A (2005a) Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology 179:303–309

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Perry EB, Gueorguieva R, Belger A, Madonick SH, Abi-Dargham A, Cooper TB, MacDougall L, Abi-Saab W, D’Souza DC (2005b) Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch Gen Psychiatry 62:985–994

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Madonick S, Perry E, Gueorguieva R, Brush L, Wray Y, Belger A, D’Souza DC (2006) Potentiation of low dose ketamine effects by naltrexone: potential implications for the pharmacotherapy of alcoholism. Neuropsychopharmacology (in press)

  • Kus L, Handa RJ, Sanderson JJ, Kerr JE, Beitz AJ (1995a) Distribution of NMDAR1 receptor subunit mRNA and [125I]MK-801 binding in the hypothalamus of intact, castrate and castrate-DHTP treated male rats. Mol Brain Res 28:55–60

    Article  CAS  PubMed  Google Scholar 

  • Kus L, Handa RJ, Hautman JM, Beitz AJ (1995b) Castration increases [125I]MK801 binding in the hippocampus of male rats. Brain Res 683:270–274

    Article  PubMed  CAS  Google Scholar 

  • Lees J, Hallak JE, Deakin JF, Dursun SM (2004) Gender differences and the effects of ketamine in healthy volunteers. J Psychopharmacol 18:337–379

    Article  PubMed  CAS  Google Scholar 

  • Lipschitz DS, D’Souza DC, White JA, Charney DS, Krystal JH (1997) Clozapine blockade of ketamine effects in healthy subjects. Biol Psychiatry 41:23S

    Article  Google Scholar 

  • Lodge D, Aram JA, Church J, Davies SN, Martin D, O’Shaughnessy CT, Zeman S (1987) Excitatory amino acids and phencyclidine-like drugs. In: Hicks TP, Lodge D, McLennan H (eds) Excitatory amino acid transmission. Alan R. Liss, New York, pp 83–90

    Google Scholar 

  • Madonick S, D’Souza DC, Brush L, Cassello K, Sernyak M, Belger A, Krystal JH (1999) Assessment of glutamate–opiate interactions: a contribution to the pathophysiology of schizophrenia? Abstracts of the VIIth international congress on schizophrenia research, Santa Fe, New Mexico, USA. Schizophrenia Res 36:310

    Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307

    Article  PubMed  CAS  Google Scholar 

  • Malhotra AK, Breier A, Goldman D, Picken L, Pickar D (1998) The apolipoprotein E epsilon 4 allele is associated with blunting of ketamine-induced psychosis in schizophrenia. A preliminary report. Neuropsychopharmacology 19:445–448

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (1994) How do sex and stress hormones affect nerve cells? Ann N Y Acad Sci 743:1–18

    Article  PubMed  CAS  Google Scholar 

  • Morgan CJA, Mofeez A, Brandner B, Bromley L, Curran HV (2004) Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology 29:208–218

    Article  PubMed  CAS  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-TodorovicV, Selke G, Melson AK, Hershey T, Craft S, Olney JW (1999) Ketamine-Induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106–118

    Article  PubMed  CAS  Google Scholar 

  • Olney J, Labruyere J, Price MT (1989) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Oranje B, van Berckel BNM, Kemmer C, van Ree JM, Kahn RS, Verbaten MN (2000) The effects of a sub-anaesthetic dose of ketamine on human selective attention. Neuropsychopharmacology 22:293–302

    Article  PubMed  CAS  Google Scholar 

  • Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  • Parwani A, Weiler MA, Blaxton TA, Warfel D, Hardin M, Frey K, Lahti AC (2005) The effects of a subanesthetic dose of ketamine on verbal memory in normal volunteers. Psychopharmacology (Berl) 183:265–274

    Article  CAS  Google Scholar 

  • Petrakis I, Limoncelli D, Gueorguieva R, Jaltow P, Boutros NN, Trevisan L, Gelernter J, Krystal JH (2004) Altered NMDA glutamate receptor antagonist response in individuals with a family vulnerability to alcoholism. Am J Psychiatr 1776–1782

  • Sharp FR, Butman M, Aardalen K, Nickolenko J, Nakki R, Massa SM, Swanson RA, Sagar SM (1994) Neuronal injury produced by NMDA antagonists can be detected using heat shock proteins and can be blocked with antipsychotics. Psychopharmacol Bull 30:555–560

    PubMed  CAS  Google Scholar 

  • Staresina BP, Bauer H, Deecke L, Walla P (2005) Neurocognitive correlates of incidental verbal memory encoding: a magnetoencephalographic (MEG) study. Neuroimage 25:430–443

    Article  PubMed  CAS  Google Scholar 

  • Thiemann S, Csernansky JG, Berger PA (1987) Rating scales in research: the case of negative symptoms. Psychiatry Res 20:47–55

    Article  PubMed  CAS  Google Scholar 

  • Umbricht D, Koller R, Vollenweider FX, Schmid L (2002) Mismatch negativity predicts psychotic experiences induced by NMDA-receptor antagonist in healthy volunteers. Biol Psychiatry 51:400–406

    Article  PubMed  CAS  Google Scholar 

  • Weiler MA, Thaker GK, Lahti AC, Tamminga CA (2000) Ketamine effects on eye movements. Neuropsychopharmacology 23:645–653

    Article  PubMed  CAS  Google Scholar 

  • Winters WD, Hance AJ, Cadd GC, Lakin M (1986) Seasonal and sex influences on ketamine-induced analgesia and catalepsy in the rat; a possible role for melatonin. Neuropharmacology 25:1095–1101

    Article  PubMed  CAS  Google Scholar 

  • Yonelinas AP (2001) Components of episodic memory: the contribution of recollection and familiarity. Philos Trans R Soc Lond B 356:1363–1374

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the critical contributions to this research program made by the research staff of the Biological Studies Unit, West Haven VA Medical Center, including Elizabeth O’Donell, R.N.; Angelina Genovese, R.N.; Sonah Yoo, RPh; and Robert Sturwold, RPh. The authors acknowledge support from the (1) Department of Veterans Affairs (Schizophrenia Biological Research Center, Alcohol Research Center, National Center for PTSD, and Merit Review Program (to JK), (2) National Institute of Alcohol Abuse and Alcoholism (KO2 AA 00261-04 to JK), (3) National Institute of Mental Health (RO1 MH61019-02 to DCD) (P50 MH44866-15 to JK), (4) National Institute of Drug Abuse (1 DA12382-01 to DCD), (5) Stanley Foundation (to DCD) (6) Bogue Fellowship from University College London (to CJAM), and (7) National Alliance for Research in Schizophrenia and Depression (NARSAD) Young Investigator Award (to HSC and EBP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Cyril D’Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, C.J.A., Perry, E.B., Cho, HS. et al. Greater vulnerability to the amnestic effects of ketamine in males. Psychopharmacology 187, 405–414 (2006). https://doi.org/10.1007/s00213-006-0409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0409-0

Keywords

Navigation