Skip to main content
Log in

Economic design of two-stage control charts with skewed and dependent measurements

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In many instances, the cost is high to monitor primary quality characteristic called performance variable, but it could be more economical to monitor its surrogate. To cover asymmetric processes in an alternating fashion of two-stage charting design using either performance variable or surrogate variable, both process variables are modeled by a skew normal distribution, respectively. The proposed two-stage control charts are constructed with an economic viewpoint using Markov chain approach. Two algorithms are provided to implement the proposed charting method. The application of the proposed charting method and its advantages over the existing methods are presented through an illustrating example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albin SL, Kang L, Sheha G (1997) An X and EWMA chart for individual observations. J Qual Technol 29:41–48

    Google Scholar 

  2. Alt FA (1984) Multivariate quality control. In: Kotz S, Johnson NL, Read CR (eds) The encyclopedia of statistical sciences, pp. 110-122. New York, Wiley

    Google Scholar 

  3. Anderson TW (1984) An introduction to multivariate statistical analysis, 2nd edn. New York, Wiley

    Google Scholar 

  4. Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MATH  MathSciNet  Google Scholar 

  5. Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew normal distribution. J R Stat Soc: Ser B 61:579–602

    Article  MATH  MathSciNet  Google Scholar 

  6. Bai DS, Lee MK (1993) Optimal target values for a filling process when inspection is based on a correlated variable. Int J Prod Econ 32:327–334

    Article  Google Scholar 

  7. Brook D, Evans DA (1972) An approach to the probability distribution of CUSUM run length. Biometrika 59:539–549

    Article  MATH  MathSciNet  Google Scholar 

  8. Capizzi G, Masarotto G (2003) An adaptive exponentially weighted moving average control chart. Technometrics 45(3):199–207

    Article  MathSciNet  Google Scholar 

  9. Chang SI, Chou SH (2010) A visualization decision support tool for multivariate SPC diagnosis using marginal CUSUM glyphs. Qual Eng 22:182–198

    Article  Google Scholar 

  10. Costa AFB, De Magalhães MS (2005) Economic design of two-stage X chart: the Markov chain approach. Int J Prod Econ 95:9–20

    Article  Google Scholar 

  11. Costa AFB, Rahim MA (2000) Joint X and R charts with two stage samplings. Qual Reliab Eng Int 20:699–708

    Article  Google Scholar 

  12. Costa AFB, Rahim MA (2004) Monitoring process mean and variability with one non-central chi-square chart. J Appl Stat 31:pp. 1171–pp. 1183

    Article  MathSciNet  Google Scholar 

  13. Chen G, Cheng SW, Xie H (2001) Monitoring process mean and variability with one EWMA chart. J Qual Technol 33:223–233

    Google Scholar 

  14. Costa AFB (1998) Joint X and R charts with variable parameters. IIE Trans 30:505–514

    Google Scholar 

  15. Costa AFB (1999) Joint X and R charts with variable sample sizes and sampling intervals. J Qual Technol 31:387–397

    Google Scholar 

  16. Costa AFB, De Magalhães MS (2007) An adaptive chart for monitoring the process mean and variance. Qual Reliab Eng Int 23:821–831

    Article  Google Scholar 

  17. Crosier RB (1988) Multivariate generalizations of cumulative sum quality control schemes. Technometrics 30:291–303

    Article  MATH  MathSciNet  Google Scholar 

  18. Crowder SV, Hamilton MD (1992) An EWMA for monitoring a process standard deviation. J Qual Technol 24:12–21

    Google Scholar 

  19. De Magalhães MS, Moura Neto FD (2005) Joint economic model for totally adaptive X and R charts. Eur J Oper Res 16:148–161

    Article  Google Scholar 

  20. Hawkins DM (1981) A CUSUM for a scale parameter. J Qual Technol 13:228–231

    Google Scholar 

  21. Gupta AK, Chen T (2003) On the sample characterization criterion for normal distributions. J Stat Comput Simul 73:155–163

    Article  MATH  MathSciNet  Google Scholar 

  22. Hawkins DL (1992) Detecting shifts in functions of multivariate location and covariance parameters. J Stat Plan Inferences 33:233–244

    Article  MATH  MathSciNet  Google Scholar 

  23. Healy JD (1987) A note on multivariate CUSUM procedures. Technometrics 29:409–412

    Article  Google Scholar 

  24. Jackson JE (1985) Multivariate quality control. Commun Stat-Theory Method 14:2657–2688

    Article  MATH  Google Scholar 

  25. Lee J, Kwon WJ (1999) Economic design of a two-stage control chart based on both performance and surrogate variable. Nav Res Logis 46:958–977

    Article  MATH  MathSciNet  Google Scholar 

  26. Lee MK, Hong SH, Kwon HM, Kim SB (2000) Optimum process mean and screening limits for a production process with three-class screening. Int J Re-liab Qual Saf Eng 7:179–190

    Article  Google Scholar 

  27. Lee MK, Hong SH, Elsayed EA (2001) The optimum target value under single and two-stage screenings. J Qual Technol 33:506–514

    Google Scholar 

  28. Lee MK, Elsayed AE (2002) Process mean and screening limits for filling processes under two-stage screening procedure. Eur J Oper Res 138:118–126

    Article  MATH  MathSciNet  Google Scholar 

  29. Li C.-I., Su N.-C., Su P.-F. and Shyr Y (2012) The design of X and R control charts for skew normal distributed data. Submitted to Communications in Statistics-Theory and Methods

  30. Lowry CA, Montgomery DC (1995) A review of multivariate control charts. IIE Trans 27:800–810

    Article  Google Scholar 

  31. Lowry CA, Woodall WH, Champ CW, Rigdon SE (1992) A multivariate exponentially weighted moving average control chart. Technometrics 34:46–53

    Article  MATH  Google Scholar 

  32. Lucas JM, Saccucci MS (1990) Exponentially weighted moving average control schemes: properties and enhancement. Technometrics 32:1–12

    Article  MathSciNet  Google Scholar 

  33. McGregor JF, Harris TJ (1993) The exponentially weighted moving variance. J Technol 25:106–118

    Google Scholar 

  34. Panagos MR, Heikes RG (1985) Montgomery DC. Economic design of X control charts for two manufacturing process models. Nav Res Logis 32:631–464

    Google Scholar 

  35. Pignatiello JJ Jr, Runger GC (1990) Comparisons of multivariate CUSUM charts. J Qual Technol 22:173–186

    Google Scholar 

  36. Prabhu SS, Runger GC (1997) Designing a multivariate EWMA control chart. J Qual Technol 29:8–15

    Google Scholar 

  37. Shu L (2008) An adaptive exponentially weighted moving average control chart for monitoring process variances. J Stat Comput Simul 78(4):367–384

    Article  MATH  MathSciNet  Google Scholar 

  38. Su N.-C. and Gupta A.K. (2013) On some sampling distributions for skew normal population. Submitted

  39. Tsai T-R (2007) Skew normal distribution and the design of control charts for averages. Int J Reliab Qual Saf Eng 14:49–63

    Article  Google Scholar 

  40. Tsai T-R, Chiang J-Y, Chang SI (2011) Economic design of two-stage non-central chi-square charts for dependent variables. Comput Ind Eng 61:970–980

    Article  Google Scholar 

  41. Woodall WH, Ncube MM (1985) Multivariate CUSUM quality control procedures. Technometrics 27:285–292

    Article  MATH  MathSciNet  Google Scholar 

  42. Yen AB, Lin KJD (2002) A new variables control for simultaneously monitoring multivariate processed mean and variability. Int J Reliab Qual Saf Eng 9:41–59

    Article  Google Scholar 

  43. Yen AB, Lin DK, Zhou H, Venkataramani C (2003) A multivariate exponentially weighted moving average control chart for monitoring process variability. J Appl Stat 30(5):507–536

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheau-Chiann Chen.

Appendices

Appendices

1.1 Appendix 1: the proof of Theorem 3

  1. (a)

    Since X τ , X τ + 1, ⋯, are iid SN(ξ 3, σ 2, λ 1) performance variables in an out-of-control state, it can be shown that the process mean of the performance variables is μ X1  = ξ 3 + μ X0 and the process standard deviation is σ X0 . Using Eqs. (4) and (5), we can show that

    $$ \begin{array}{c}\hfill {P}_r\left({\mathrm{LCL}}_{\overline{X}}<\overline{X}<{\mathrm{UCL}}_{\overline{X}}\Big|{\mu}^X={\mu}_1^X,{\sigma}^X={\sigma}_0^X\right)\hfill \\ {}\hfill ={P}_r\left({\mathrm{LCL}}_{\overline{X}}<{\mu}_1^X+\left({\gamma}_1{\displaystyle {\overline{Z}}_X}-{\gamma}_2\right){\sigma}_0^X<{\mathrm{UCL}}_{\overline{X}}\right)\hfill \\ {}\hfill ={P}_r\left(-\frac{\xi_3}{\gamma_1{\sigma}_0^X}+{\displaystyle {\overline{z}}_{\lambda_1,{n}_X,p/2}}<{\displaystyle {\overline{Z}}_X}\right.\kern0.5em \left.<-\frac{\xi_3}{\gamma_1{\sigma}_0^X}+{\displaystyle {\overline{z}}_{\lambda_1,{n}_X,1-p/2}}\right).\hfill \end{array} $$
    (21)
  2. (b)

    Replacing \( \left({\mathrm{LCL}}_{\overline{X}},{\mathrm{UCL}}_{\overline{X}}\right) \) by \( \left({\mathrm{LWL}}_{\overline{X}},{\mathrm{UWL}}_{\overline{X}}\right) \) and p by p 2, respectively. Theorem 3(b) can be proved using an analog proof process to that of (a).

1.2 Appendix 2: The transition probabilities p ij in P

$$ \begin{array}{c}\hfill {p}_{11}= \Pr \left\{\left.\overline{Y}\kern0.5em \in {I}_Y\right|{\mu}^Y={\mu}_0^Y,{\sigma}^Y={\sigma}_0^Y\right\}{e}^{-\theta hy}\hfill \\ {}\hfill {p}_{12}=\left[1- \Pr \left\{\left.\overline{Y}\kern0.5em \in {I}_Y\right|{\mu}^Y={\mu}_0^Y,{\sigma}^Y={\sigma}_0^Y\right\}\right]{e}^{-\theta {h}_X}\hfill \\ {}\hfill {p}_{13}= \Pr \left\{\left.\overline{Y}\in {I}_Y\right|{\mu}^Y={\mu}_0^Y,{\sigma}^Y={\sigma}_0^Y\right\}\left(1-{e}^{-\theta hy}\right)\hfill \\ {}\hfill {p}_{14}=\left[1-{P}_r\left\{\left.\overline{Y}\in {I}_Y\right|{\mu}^Y={\mu}_0^Y,{\sigma}^Y={\sigma}_0^Y\right\}\right]\times \left(1-{e}^{-\theta {h}_X}\right)\hfill \\ {}\hfill {p}_{21}={P}_r\left\{\left.\overline{X}\kern0.5em \in {I}_{X_W}\right|\overline{X}\in {I}_{X_A},{\mu}^X={\mu}_0^X,{\sigma}^X={\sigma}_0^X\right\}\times {e}^{-\theta {h}_Y}\hfill \\ {}\hfill {p}_{22}={P}_r\left\{\left.\overline{X}\in {I}_{X_{WA}}\right|\overline{X}\in {I}_{X_A},{\mu}^X={\mu}_0^X,{\sigma}^X={\sigma}_0^X\right\}\times {e}^{-\theta {h}_X}\hfill \\ {}\hfill {p}_{23}={P}_r\left\{\left.\overline{X}\in {I}_{X_W}\right|\overline{X}\in {I}_{X_A},{\mu}^X={\mu}_0^X,{\sigma}^X={\sigma}_0^X\right\}\times \left(1-{e}^{-\theta {h}_Y}\right)\hfill \\ {}\hfill {p}_{24}={P}_r\left\{\left.\overline{X}\in {I}_{X_{WA}}\right|\overline{X}\in {I}_{X_A},{\mu}^X={\mu}_0^X,{\sigma}^X={\sigma}_0^X\right\}\times \left(1-{e}^{-\theta {h}_X}\right)\hfill \\ {}\hfill {p}_{33}={P}_r\left\{\left.\overline{Y}\in {I}_Y\right|{\mu}^Y={\mu}^Y,{\sigma}^Y={\sigma}_0^Y\right\}\hfill \\ {}\hfill {p}_{34}=1-{p}_{33}\hfill \\ {}\hfill {p}_{43}={P}_r\left\{\left.\overline{X}\in {I}_{Xw}\right|\overline{X}\in {I}_{X_A},{\mu}^X={\mu}_1^X,{\sigma}^X={\sigma}_0^X\right\}\hfill \\ {}\hfill {p}_{44}={P}_r\left\{\overline{X}\in \left.{I}_{X_{WA}}\right|\overline{X}\in {I}_{X_A},{\mu}^X={\mu}_1^X,{\sigma}^X={\sigma}_0^X\right\}\hfill \\ {}\hfill {p}_{45}=1-{P}_r\left\{\left.\overline{X}\in {I}_{X_A}\right|{\mu}^X={\mu}_1^X,{\sigma}^X={\sigma}_0^X\right\}\hfill \\ {}\hfill {p}_{55}=1\hfill \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, NC., Chiang, JY., Chen, SC. et al. Economic design of two-stage control charts with skewed and dependent measurements. Int J Adv Manuf Technol 73, 1387–1397 (2014). https://doi.org/10.1007/s00170-014-5897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5897-1

Keywords

Navigation