Skip to main content

Advertisement

Log in

The triploid East African Highland Banana (EAHB) genepool is genetically uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation

Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

All East African Highland Banana varieties are genetically uniform having arisen from a single clone introduced to Africa.

Abstract

East African Highland bananas (EAHBs) are a subgroup of triploid (AAA genome) bananas of importance to food security in the Great Lakes region of Africa. Little is known about their genetic variation, population structure and evolutionary history. Ninety phenotypically diverse EAHB cultivars were genotyped at 100 SSR microsatellite markers to investigate population genetic diversity, the correlation of genetic variability with morphological classes, and evolutionary origins since introduction to Africa. Population-level statistics were compared to those for plantain (AAB) and dessert (AAA) cultivars representing other M. acuminata subgroups. EAHBs displayed minimal genetic variation and are largely genetically uniform, irrespective of whether they were derived from the distinct Ugandan or Kenyan germplasm collections. No association was observed between EAHB genetic diversity and currently employed morphological taxonomic systems for EAHB germplasm. Population size dynamics indicated that triploid EAHBs arose as a single hybridization event, which generated a genetic bottleneck during foundation of the EAHB genepool. As EAHB triploids are sterile, subsequent asexual vegetative propagation of EAHBs allowed a recent rapid expansion in population size. This provided a basis for emergence of genetically near-isogenic somatic mutants selected across farmers and environments in East Africa over the past 2000 years since EAHBs were first introduced to the African continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdullah NAP, Bin Saleh G, Putra ETS, Bin Wahab Z (2012) Genetic relationship among Musa genotypes revealed by microsatellite markers. Afr J Biotechnol 11(26):6769–6776

    CAS  Google Scholar 

  • Amos W, Hoffman JIW (2010) Evidence that two main bottleneck events shaped modern human genetic diversity. Proc Biol Sci 277(1678):131–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21(2):255–265

    Article  CAS  PubMed  Google Scholar 

  • Butler D (2013) Fungus threatens top banana: fears rise for Latin American industry as devastating disease hits leading variety in Africa and Middle East. Nature 504:195–196

    Article  CAS  PubMed  Google Scholar 

  • Butlin R (2002) The costs and benefits of sex: new insights from old asexual lineages. Nat Rev Genet 3:311–317

    Article  CAS  PubMed  Google Scholar 

  • Buwa R (2009) Using SSR markers to fingerprint the East African Highland banana cultivars. M.Sc., Makerere University

  • Changadeya W, Kaunda E, Ambali AJD (2012) Molecular characterization of Musa cultivars in Malawi using SSR. Afr J Biotechnol 11(18):4140–4157

    CAS  Google Scholar 

  • Christelova P, Valarik M, Hribova E, Van den Houwe I, Channeliere S, Roux N, Dolezel J (2011) A platform for efficient genotyping in Musa using microsatellite markers. AoB Plants 2011:plr024

    Article  PubMed Central  PubMed  Google Scholar 

  • Cooper H, Spillane C, Hodgkin T (2000) Broadening the genetic bases of crop production. IPGRI, FAO, CABI, Rome (Italy), Wallingford (UK)

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crane MB, Lawrence WJC (1956) The genetics of garden plants, 4th edn. Macmillan, London

    Google Scholar 

  • Creste S, Neto AT, de Oliveira Silva S, Figueira A (2003) Genetic characterization of banana cultivars (Musa spp.) from Brazil using microsatellite markers. Euphytica 132:259–268

    Article  CAS  Google Scholar 

  • Crouch JH, Vuylsteke D, Ortiz R (1997) Microsatellite markers for molecular breeding of Musa. InfoMusa 6(1):5–6

    Google Scholar 

  • de Jesus ON, Silva Sde O, Amorim EP, Ferreira CF, de Campos JM, Silva Gde G, Figueira A (2013) Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC Plant Biol 13:41

    Article  PubMed Central  PubMed  Google Scholar 

  • De Langhe E (1961) La taxonomie du bananier plantain en Afrique Équatoriale. Journal d'agriculture tropicale et de botanique appliquée 8:417–449

    Article  Google Scholar 

  • De Langhe EA (1964) The origin of variation in the plantain banana. Mededelingen van de Landbouwhogeschool en de Opzoekingsstations van de Staat te Gent 39:45–80

    Google Scholar 

  • DeGiorgio M, Degnan JH, Rosenberg NA (2011) Coalescence-time distributions in a serial founder model of human evolutionary history. Genetics 189(2):579–593

    Article  PubMed Central  PubMed  Google Scholar 

  • Dellaporta S, Wood J, Hicks J (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217

    Article  PubMed  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci 91(8):3166–3170

    Article  PubMed Central  PubMed  Google Scholar 

  • Drummond AJ (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22(5):1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Earl DA (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • El-Khishin D, Belatus EL, El-Hamid AA, Radwan KH (2009) Molecular characterization of banana cultivars (Musa spp.) from Egypt using AFLP. Res J Agric Biol Sci 5(3):272–279

    CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens S, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu Y-X, Chakraborty R (1998) Simultaneous estimation of all the parameters of a stepwise mutation model. Genetics 150:487–497

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galov A, Byrne K, Gomerčić T, Duras M, Arbanasić H, Sindičić M, Mihelić D, Kovačić A, Funk SM (2013) Genetic structure and admixture between the Posavina and Croatian coldblood in contrast to the Lippizan horse from Croatia. Czech J Anim Sci 58(2):71–78

    Google Scholar 

  • Ganapathy KN, Gomashe SS, Rakshit S, Prabhakar B, Ambekar SS, Ghorade RB, Biradar BD, Saxena U, Patil JV (2012) Genetic diversity revealed utility of SSR markers in classifying parental lines and elite genotypes of sorghum (Sorghum bicolor L. Moench.). Aust J Crop Sci 6(11):1486–1493

    Google Scholar 

  • García-Bastidas F, Ordóñez N, Konkol J, Al-Qasim M, Naser Z, Abdelwali M, Salem N, Ploetz RC, Kema GHJ (2014) First report of Fusarium oxysporum f. sp. cubense tropical race 4 associated with Panama disease of banana outside Southeast Asia. Plant Disease 98:694

    Article  Google Scholar 

  • Gebremedhin B, Ficetola GF, Naderi S, Rezaei HR, Maudet C, Rioux D, Luikart G, Flagstad Ø, Thuiller W, Taberlet P (2009) Combining genetic and ecological data to assess the conservation status of the endangered Ethiopian walia ibex. Anim Conserv 12(2):89–100

    Article  Google Scholar 

  • Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139(1):463–471

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289

    Article  PubMed Central  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100(5):1073–1084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hippolyte I, Bakry F, Seguin M, Gardes L, Rivallan R, Risterucci AM, Jenny C, Perrier X, Carreel F, Argout X et al (2010) A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas. BMC Plant Biol 10:65

    Article  PubMed Central  PubMed  Google Scholar 

  • Hippolyte I, Jenny C, Gardes L, Bakry F, Rivallan R, Pomies V, Cubry P, Tomekpe K, Risterucci AM, Roux N et al (2012) Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Ann Bot 109(5):937–951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoban S, Gaggiotti OE, Bertorelle G (2013) The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: a simulation -based study. Mol Ecol 22:3444–3450

    Article  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267

    Article  CAS  PubMed  Google Scholar 

  • Karamura D (1998) Numerical taxonomic studies of the East African highland bananas (Musa AAA- East Africa) in Uganda. Doctor of Philosophy, PGRI, Reading

  • Kennedy J (2008) Pacific Bananas: complex origins, multiple dispersals? Asian Perspect 47:75–94

    Article  Google Scholar 

  • Lewontin R (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Article  Google Scholar 

  • Li L, Wang HY, Zhang C, Wang XF, Shi FX, Chen WN, Ge XJ (2013) Origins and domestication of cultivated banana inferred from chloroplast and nuclear genes. PLoS One 8(11):e80502

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinform Appl Note 21(9):2128–2129

    Article  CAS  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. Am Genet Assoc 89(3):238–247

    CAS  Google Scholar 

  • Mace E, Buhariwalla K, Buhariwalla H, Crouch J (2003) A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21:459–460

    Article  Google Scholar 

  • Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin G, Baurens FC, Cardi C, Aury JM, D’Hont A (2013) The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS One 8(6):e67350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111(3):675–689

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mbanjo EGN, Tchoumbougnang F, Mouelle AS, Oben JE, Nyine M, Dochez C, Ferguson ME, Lorenzen J (2012) Development of expressed sequence tags-simple sequence repeats (EST-SSRs) for Musa and their applicability in authentication of a Musa breeding population. Afr J Biotechnol 11(71):13546–13559

    CAS  Google Scholar 

  • McEachern MB, Van Vuren DH, Floyd CH, May B, Eadie JM (2011) Bottleneck and rescue effects in fluctuating population of golden mantle ground squirrels. Conserv Genet 12:285–296

    Article  Google Scholar 

  • Miller M, Haig SM, Mullins Thomas D, Poppe KJ, Green M (2012) Evidence for population bottlenecks and subtle genetic structure in the Yellow Rail. The Condor 114(1):100–112

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Opara UL, Jacobson D, Al-Saady NA (2010) Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses. J Zhejiang Univ Sci B 11(5):332–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ortiz R, Swennen R (2014) From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol Adv 32(1):158–169

    Article  CAS  PubMed  Google Scholar 

  • Pachuau L, Atom AD, Thangjam R (2014) Genome classification of Musa cultivars from northeast India as revealed by ITS and IRAP markers. Appl Biochem Biotechnol 172(8):3939–3948

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perrier X, Bakry F, Carreel F, Jenny C, Horry JP, Lebot V, Hippolyte I (2009) Combining biological approaches to shed light on evolution of edible bananas. Ethnobot Res Appl 7:199–216

    Google Scholar 

  • Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, Carreel F, Hippolyte I, Horry JP, Jenny C et al (2011) Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc Natl Acad Sci 108(28):11311–11318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pillay M, Ogundiwin E, Nwakanma D, Ude G, Tenkouano A (2001) Analysis of genetic diversity and relationships in East African banana germplasm. Theor Appl Genet 102(6–7):965–970

    Article  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90(4):502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Resmi L, Kumari R, Bhat KV, Nair AS (2011) Molecular Characterization of genetic diversity and structure in South Indian Musa cultivars. Int J Bot 7(4):274–282

    Article  CAS  Google Scholar 

  • Sainudiin R, Durrett RT, Aquadro CF, Nielsen R (2004) Microsatellite mutation models: insights from a comparison of humans and chimpanzees. Genetics 168:383–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scarcelli N, Marie Couderc M, Baco MN, Egah J, Vigouroux Y (2013) Clonal diversity and estimation of relative clone age: application to agrobiodiversity of yam (Dioscorea rotundata). BMC Plant Biol 13:178

    Article  PubMed Central  PubMed  Google Scholar 

  • Schoebel CN, Stewart J, Gruenwald NJ, Rigling D, Prospero S (2014) Population history and pathways of spread of the plant pathogen Phytophthora plurivora. PLoS One 9(1):e85368

    Article  PubMed Central  PubMed  Google Scholar 

  • Shaibu AA (2012) Genetic diversity analysis of Musa species using amplified fragment length polymorphism and multivariate statistical technique. Int J Biochem Biotechnol 1(6):175–178

    Google Scholar 

  • Shepherd K (1957) Banana cultivars in East Africa. Trop Agric 34:277–286

    Google Scholar 

  • Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. J Linn Soc Lond Bot 55(359):302–312

    Article  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9(10):1517–1528

    Article  CAS  PubMed  Google Scholar 

  • Ssebuliba RN, Rubaihayo R, Tenkouano A, Makumbi D, Talegera D, Magambo M (2005) Genetic diversity among East African Highland bananas for female fertility. Afr Crop Sci J 13(1):13–26

    Google Scholar 

  • Till BJ, Jankowicz-Cieslak J, Sagi L, Huynh OA, Utsushi H, Swennen R, Terauchi R, Mba C (2010) Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling. Theor Appl Genet 121(7):1381–1389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tugume AK, Lubega GW, Rubaihayo PR (2003) Genetic diversity of East African Highland bananas using AFLP. Infomusa 11(2):28–32

    Google Scholar 

  • Ude G, Pillay M, Ogundiwin E, Tenkouano A (2003) Genetic diversity in an African plantain core collection using AFLP and RAPD markers. Theor Appl Genet 107(2):248–255

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitlock R, Hipperson H, Mannarelli M, Butlin RK, Burke T (2008) An objective, rapid and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Mol Ecol Resour 8(4):725–735

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Drummond AJ (2011) Joint inference of microsatellite mutation models, population history and genealogies using transdimensional Markov Chain Monte Carlo. Genetics 188(1):151–164

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was conducted at Biosciences Eastern and Central Africa (BecA)-ILRI and in the Genetics and Biotechnology Lab at the Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, National University of Ireland Galway. We thank Dr Kassa Semagn for his invaluable help in data analysis. This research was supported by funding from Irish Aid and the International Institute for Tropical Agriculture (IITA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Spillane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. H. Schulman.

M. Onyango: Deceased (RIP).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitavi, M., Downing, T., Lorenzen, J. et al. The triploid East African Highland Banana (EAHB) genepool is genetically uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation. Theor Appl Genet 129, 547–561 (2016). https://doi.org/10.1007/s00122-015-2647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2647-1

Keywords

Navigation