Skip to main content
Log in

Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The availability of genomic resources can facilitate progress in plant breeding through the application of advanced molecular technologies for crop improvement. This is particularly important in the case of less researched crops such as cassava, a staple and food security crop for more than 800 million people. Here, expressed sequence tags (ESTs) were generated from five drought stressed and well-watered cassava varieties. Two cDNA libraries were developed: one from root tissue (CASR), the other from leaf, stem and stem meristem tissue (CASL). Sequencing generated 706 contigs and 3,430 singletons. These sequences were combined with those from two other EST sequencing initiatives and filtered based on the sequence quality. Quality sequences were aligned using CAP3 and embedded in a Windows browser called HarvEST:Cassava which is made available. HarvEST:Cassava consists of a Unigene set of 22,903 quality sequences. A total of 2,954 putative SNPs were identified. Of these 1,536 SNPs from 1,170 contigs and 53 cassava genotypes were selected for SNP validation using Illumina’s GoldenGate assay. As a result 1,190 SNPs were validated technically and biologically. The location of validated SNPs on scaffolds of the cassava genome sequence (v.4.1) is provided. A diversity assessment of 53 cassava varieties reveals some sub-structure based on the geographical origin, greater diversity in the Americas as opposed to Africa, and similar levels of diversity in West Africa and southern, eastern and central Africa. The resources presented allow for improved genetic dissection of economically important traits and the application of modern genomics-based approaches to cassava breeding and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517

    Article  PubMed  CAS  Google Scholar 

  • Anderson JV, Delseny M, Fregene MA, Jorge V, Mba C, Lopez C, Restrepo S, Soto M, Piegu B, Verdier V, Cooke R, Tohme J, Horvath DP (2004) An EST resource for cassava and other species of Euphorbiaceae. Plant Mol Biol 56:527–539

    Article  PubMed  Google Scholar 

  • Anithakumari A, Tang J, van Eck H, Visser R, Leunissen J, Vosman B, van der Linden C (2010) A pipeline for high throughput detection and mapping of SNPs from EST databases. Mol Breed 26:65–75

    Article  PubMed  CAS  Google Scholar 

  • Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Gustafson JP, Langridge P, Somers DJ (eds) Plant Genomics. Methods in Molecular Biology. Humana Press, New York, pp 19–39. http://dx.doi.org/10.1007/978-1-59745-427-8_2

    Chapter  Google Scholar 

  • Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91

    Article  PubMed  CAS  Google Scholar 

  • Brumfield R, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256

    Article  Google Scholar 

  • Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo MC, Dubcovsky J (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 23:23–33

    Article  CAS  Google Scholar 

  • Chavarriaga-Aguirre PP, Maya MM, Bonierbale M, Kresovich S, Fregene MA, Tohme J, Kochert G (1998) Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theor Appl Genet 97:493–501

    Article  CAS  Google Scholar 

  • Chavarriaga-Aguirre P, Maya MM, Tohme J, Duque M, Iglesias C, Bonierbale M, Kresovich S, Kochert G (1999) Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. Mol Breed 5:263–273. http://dx.doi.org/10.1023/A:1009627231450

    Article  CAS  Google Scholar 

  • Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney J, Reuber TL, Stammers M, Federspiel N, Theologis A, Yang WH, Hubbell E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel FM, Davis RW, Oefner PJ (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968

    Article  PubMed  CAS  Google Scholar 

  • Close T, Bhat P, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  Google Scholar 

  • Dixon AGO, Bandyopadhyay R, Coyne D, Ferguson M, Ferris S, Hanna R, Hughes J, Ingelbrecht I, Legg J, Mahungu N, Manyong V, Mowbray D, Neuenschwander P, Whyte J, Hartmann P, Ortiz R (2003) Cassava: from poor farmer’s crop to pacesetter of African rural development. Chronica Hortic 43:8–15

    Google Scholar 

  • El Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56:481–501

    Article  PubMed  CAS  Google Scholar 

  • FAO (2008) http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

  • Fregene MA, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, Mitchel S, Gullberg U, Rosling H, Dixon AG, Dean R, Kresovich S (2003) Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Gene 107:1083–1093

    Google Scholar 

  • Garg K, Green P, Nickerson DA (1999) Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags. Genome Res 9:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Grivet L, Glaszmann J-C, Vincentz M, da Silva F, Arruda P (2002) ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor Appl Genet 106:190–197

    PubMed  Google Scholar 

  • Hyten D, Song Q, Choi IY, Yoon MS, Specht J, Matukumalli L, Nelson R, Shoemaker R, Young N, Cregan P (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952

    Article  PubMed  CAS  Google Scholar 

  • Jennings D, Iglesias C (2001) Breeding for crop improvement. In: Hillocks R, Thresh J (eds) Cassava biology, production and utilization. CAB International, Oxon, pp 149–166

    Google Scholar 

  • Jones W (1969) Manioc in Africa. Stanford University Press, Stanford

    Google Scholar 

  • Kawuki R, Ferguson M, Labuschagne M, Herselman L, Kim DJ (2009) Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Mol Breed 23:669–684

    Google Scholar 

  • Kunkeaw S, Tangphatsornruang S, Smith DR, Triwitayakorn K (2010) Genetic linkage map of cassava (Manihot esculenta Crantz) based on AFLP and SSR markers. Plant Breed 129:112–115

    Article  CAS  Google Scholar 

  • Lebot V (2009) Tropical root and tuber crops: cassava, sweet potato, yams and aroids. Crop Production Science in Horticulture 17. CABI, Wallingford

    Google Scholar 

  • Liu K, Muse S (2005) PowerMarker. Integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Lokko Y, Anderson J, Rudd S, Raji A, Horvath D, Mikel M, Kim R, Liu L, Hernandez A, Dixon A, Ingelbrecht I (2007) Characterization of an 18, 166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618

    Article  PubMed  CAS  Google Scholar 

  • Lopez C, Jorge V, Piegu B, Mba C, Cortes D, Restrepo S, Soto M, Laudie M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V (2004) A unigene catalogue of 5700 expressed genes in cassava. Plant Mol Biol 56:541–554

    Article  PubMed  Google Scholar 

  • Lopez C, Piegu B, Cooke R, Delseny M, Tohme J, Verdier V (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet 110:425–431

    Google Scholar 

  • Luo M, Dang P, He G, Holbrook C, Bausher M, Lee R (2005) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 45:343–356

    Article  Google Scholar 

  • Mba REC, Stephensen P, Edwards K, Melzer S, Nkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31

    Article  CAS  Google Scholar 

  • McCarthy F, Wang N, Magee GB, Nanduri B, Lawrence M, Camon E, Barrell D, Hill D, Dolan M, Williams WP, Luthe D, Bridges S, Burgess S (2006) AgBase: a functional genomics resource for agriculture. BMC Genomics 7:229

    Article  PubMed  Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Colombia University Press, New York

    Google Scholar 

  • Nelson R, Naylor RL, Jahn MM (2004) The role of genomics research in improvement of “orphan” crops. Crop Sci 44:1901–1904

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin.http://darwin.cirad.fr/darwin

  • Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Boyce-Jacino M (1999) Mining SNPs from EST databases. Genome Res 9:167–174

    PubMed  CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Raji A, Anderson J, Kolade O, Ugwu C, Dixon A, Ingelbrecht I (2009) Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9:118

    Article  PubMed  Google Scholar 

  • Rostoks N, Borevitz J, Hedley P, Russell J, Mudie S, Morris J, Cardle L, Marshall D, Waugh R (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biol 6:R54

    Article  PubMed  Google Scholar 

  • Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66

    Article  PubMed  Google Scholar 

  • Schmid KJ, Sörensen TR, Stracke R, Törjék O, Altmann T, Mitchell-Olds T, Weisshaar B (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257

    Article  PubMed  Google Scholar 

  • Sraphet S, Boonchanawiwat A, Thanyasiriwat T, Boonseng O, Tabata S, Sasamoto S, Shirasawa K, Isobe S, Lightfoot D, Tangphatsornruang S, Triwitayakorn K (2011) SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet 122:1161–1170

    Article  PubMed  Google Scholar 

  • Sriroth K, Piyachomkwan K, Wanlapatit S, Oates C (2000) Cassava starch technology: the Thai experience. Starch 52:439–449

    Article  CAS  Google Scholar 

  • Syvänen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    Article  PubMed  Google Scholar 

  • Tangphatsornruang S, Sraphet S, Singh R, Okogbenin E, Fregene M, Triwitayakorn K (2008) Development of polymorphic markers from expressed sequence tags of Manihot esculenta Crantz. Mol Ecol Resour 8:682–685

    Article  PubMed  CAS  Google Scholar 

  • Tonujari NJ (2004) Cassava and the future of starch. Electron J Biotechnol 7:5–8

    Google Scholar 

  • Xia L, Peng K, Yang S, Wenzl P, Carmen de Vicente M, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of Cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Steve Rounsley and Simon Prochnik for valuable comments. This work was funded by BioSciences eastern and central Africa Network (BecANet) (Goldengate assay development and genotyping), the Generation Challenge Program (GCP) (cDNA library development, sequencing and initial bioinformatics) and the International Institute of Tropical Agriculture (IITA) (HarvEST:Cassava development and SNP identification).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morag E. Ferguson.

Additional information

Communicated by G. Bryan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, M.E., Hearne, S.J., Close, T.J. et al. Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theor Appl Genet 124, 685–695 (2012). https://doi.org/10.1007/s00122-011-1739-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1739-9

Keywords

Navigation