Skip to main content
Log in

Genome size of termites (Insecta, Dictyoptera, Isoptera) and wood roaches (Insecta, Dictyoptera, Cryptocercidae)

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The evolution of genome size has been discussed in relation to the evolution of various biological traits. In the present study, the genome sizes of 22 dictyopteran species were estimated by Feulgen image analysis densitometry and 6-diamidino-2-phenylindole (DAPI)-based flow cytometry. The haploid genome sizes (C-values) of termites (Isoptera) ranged from 0.58 to 1.90 pg, and those of Cryptocercus wood roaches (Cryptocercidae) were 1.16 to 1.32 pg. Compared to known values of other cockroaches (Blattaria) and mantids (Mantodea), these values are low. A relatively small genome size appears to be a (syn)apomorphy of Isoptera + Cryptocercus, together with their sociality. In some phylogenetic groups, genome size evolution is thought to be influenced by selective pressure on a particular trait, such as cell size or rate of development. The present results raise the possibility that genome size is influenced by selective pressures on traits associated with the evolution of sociality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bell WJ, Roth LM, Nalepa CA (2007) Cockroaches: ecology, behavior, and natural history. Johns Hopkins University Press, Baltimore, Maryland, p 230

    Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157 Mb and thus ~25% larger than the Arabidopsis genome size initiative estimate of ~125 Mb. Ann Bot 91:547–557

    Article  PubMed  CAS  Google Scholar 

  • Bier K, Müller W (1969) DNA-messungen bei insekten und eine hypothese über retardierte evolution und besonderen DNA-reichtum in tierreich. Biol Zent bl 88:425–449

    CAS  Google Scholar 

  • Cavalier-Smith T (1985) Introduction: the evolutionary significance of genome size. In: Cavalier-Smith T (ed) The evolution of genome size. Wiley, Chichester, UK, pp 1–36

    Google Scholar 

  • Cornette R, Koshikawa S, Hojo M, Matsumoto T, Miura T (2006) A caste-specific cytochrome P450 in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). Insect Mol Biol 15:235–244

    Article  PubMed  CAS  Google Scholar 

  • Costa JT (2006) The other insect societies. The Belknap Press of Harvard University Press, Cambridge, Massachusetts, p 812

    Google Scholar 

  • Crozier RH (2004) The other core eusocial insects: a need for termite genomics. In: Entomology Strength in Diversity: Proceedings of XXII International Congress of Entomology (with CD-ROM). Brisbane, Australia, p 161, section 18 in CD-ROM

  • Deitz LL, Nalepa C, Klass K-D (2003) Phylogeny of the Dictyoptera re-examined (Insecta). Entomol Abh 61:69–91

    Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greihuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–128

    Article  PubMed  Google Scholar 

  • Eggleton P (2001) Termites and trees: a review of recent advances in termite phylogenetics. Insectes Soc 48:187–193

    Article  Google Scholar 

  • Grandcolas P (1996) The phylogeny of cockroach families: a cladistic appraisal of morpho-anatomical data. Can J Zool 74:508–527

    Article  Google Scholar 

  • Gregory TR (2002a) Genome size and developmental complexity. Genetica 115:131–146

    Article  PubMed  Google Scholar 

  • Gregory TR (2002b) The C-value enigma. Ph.D. Thesis, Department of Zoology, University of Guelph, Canada, pp 894

  • Gregory TR (2005a) Genome size evolution in animals. In: Gregory TR (ed) The evolution of the genome. Elsevier, Burlington, Massachusetts, pp 3–87

    Google Scholar 

  • Gregory TR (2005b) Synergy between sequence and size in large scale genomics. Nat Rev Genet 6:699–708

    Article  PubMed  CAS  Google Scholar 

  • Gregory TR (2007) Animal Genome Size Database [online]. Available from http://www.genomesize.com. [accessed 29 February 2008]

  • Gregory TR, Hebert PDN (1999) The modulation of DNA content: proximate causes and ultimate consequences. Genome Res 9:317–324

    PubMed  CAS  Google Scholar 

  • Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York, p 755

    Google Scholar 

  • Hardie DC, Gregory TR, Hebert PDN (2002) From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem 50:735–749

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Lo N, Miyata H, Kitade O (2007) Sex-linked genetic influence on caste determination in a termite. Science 318:985–987

    Article  PubMed  CAS  Google Scholar 

  • Hojo M, Koshikawa S, Cornette R, Matsumoto T, Miura T (2005) Identification of soldier-specific genes in the nasute termite Nasutitermes takasagoensis (Isoptera: Termitidae). Entomol Sci 8:379–387

    Article  Google Scholar 

  • Hojo M, Matsumoto T, Miura T (2007) Cloning and expression of a geranylgeranyl diphosphate synthase gene—insights into the synthesis of termite defense secretion. Insect Mol Biol 16:121–131

    Article  PubMed  CAS  Google Scholar 

  • Hughes WOH, Sumner S, Van Borm, S, Boomsma JJ (2003) Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc Nat Acad Sci USA 100:9394–9397

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335

    Article  PubMed  CAS  Google Scholar 

  • Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86:609–613

    Article  PubMed  CAS  Google Scholar 

  • Johnston JS, Ross LD, Bean L, Hughes DP, Kathirithamby J (2004) Tiny genomes and endoreduplication in Strepsiptera. Insect Mol Biol 13:581–585

    Article  PubMed  CAS  Google Scholar 

  • Johnston JS, Yoon KS, Stbycharz JP, Pittendrigh BR, Clark JM (2007) Body lice and head lice (Anoplura: Pediculidae) have the smallest genomes of any hemimetabolous insect reported to date. J Med Entomol 44:1009–1012

    PubMed  Google Scholar 

  • Kambhampati S (2006) Termite genomics: Present knowledge and future directions. In: Proceedings of XV International Congress of IUSSI, Washington D.C., p105

  • Koshikawa S, Cornette R, Hojo M, Maekawa K, Matsumoto T, Miura T (2005) Screening of genes expressed in developing mandibles during soldier differentiation in the termite Hodotermopsis sjostedti. FEBS Lett 579:1365–1370

    Article  PubMed  CAS  Google Scholar 

  • Klass KD, Meier R (2006) A phylogenetic analysis of Dictyoptera (Insecta) based on morphological characters. Entomol Abh 63:3–50

    Google Scholar 

  • Lima-De-Faria A, Gustafsson T, Jaworska H (1973) Amplification of ribosomal DNA in Acheta II. The number of nucleotide pairs of the chromosomes and chromomers involved in amplification. Hereditas 73:119–142

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Engel MS, Cameron S, Nalepa CA, Tokuda G, Grimaldi D, Kitade O, Krishna K, Klass KD, Maekawa K, Miura T, Thompson GJ (2007) Save Isoptera: a comment on Inward et al. Biol Lett 3:562–563

    Article  PubMed  Google Scholar 

  • Miura T, Kamikouchi A, Sawata M, Takeuchi H, Natori S, Kubo T, Matsumoto T (1999) Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae). Proc Natl Acad Sci USA 96:13874–13879

    Article  PubMed  CAS  Google Scholar 

  • Nalepa CA, Bandi C (2000) Characterizing the ancestors: paedomorphosis and termite evolution. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht, The Netherlands, pp 53–75

    Google Scholar 

  • Nalepa CA, Bell WJ (1997) Postovulation parental investment and parental care in cockroaches. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, UK, pp 26–51

    Google Scholar 

  • Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28

    Article  PubMed  CAS  Google Scholar 

  • Rasch EM, Barr HJ, Rasch RW (1971) The DNA content of sperm of Drosophila melanogaster. Chromosoma 33:1–18

    Article  PubMed  CAS  Google Scholar 

  • Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht, The Netherlands, pp 95–119

    Google Scholar 

  • Scharf ME, Wu-Scharf D, Bennett GW, Pittendrigh BR (2003) Caste and development-associated gene expression in a lower termite. Genome Biol 4:R62

    Article  PubMed  Google Scholar 

  • Scharf ME, Wu-Scharf D, Zhou X, Pittendrigh BR, Bennet GW (2005) Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect Mol Biol 14:31–44

    Article  PubMed  CAS  Google Scholar 

  • Thorne BL (1996) Termite terminology. Sociobiology 28:253–263

    Google Scholar 

  • Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28:27–54

    Article  Google Scholar 

  • Westerman PK, Barton NH, Hewitt GM (1987) Differences in DNA content between two chromosomal races of the grasshopper Podisma pedestris. Heredity 58:221–228

    Article  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, Massachusetts, p 548

    Google Scholar 

  • Wu-Scharf D, Scharf ME, Pittendrigh BR, Bennett GW (2003) Expressed sequence tags from a polyphenic Reticulitermes flavipes cDNA library. Sociobiology 41:479–489

    Google Scholar 

  • Zhou XG, Oi FM, Scharf ME (2006) Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc Natl Acad Sci USA 103:4499–4504

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to four anonymous referees for providing valuable suggestions. We thank N. Lo for improving the manuscript, M. Ohara and S. Kubota for instruction on flow cytometry, T.A. Evans, C. Bordereau, Y.C. Park, C. Nalepa and M. Hojo for providing samples, and K. Maekawa, A. Fujita, S. Hongo, Y. Nakamura, Y. Ishikawa and A. Ishikawa for their assistance in field sampling and advices during the study. Drosophila melanogaster Oregon R was kindly provided by T. Ide at Drosophila Stock Room of Tokyo Metropolitan University and K. Yoshida at Hokkaido University. This work was supported by KAKENHI (Nos. 18047002 and 18370007). The first and second authors were supported by JSPS Research Fellowship for Young Scientists. All research reported in this paper complies with the present laws of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shigeyuki Koshikawa or Toru Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koshikawa, S., Miyazaki, S., Cornette, R. et al. Genome size of termites (Insecta, Dictyoptera, Isoptera) and wood roaches (Insecta, Dictyoptera, Cryptocercidae). Naturwissenschaften 95, 859–867 (2008). https://doi.org/10.1007/s00114-008-0395-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0395-7

Keywords

Navigation