Skip to main content
Log in

Ultrapotent effects of salvinorin A, a hallucinogenic compound from Salvia divinorum, on LPS-stimulated murine macrophages and its anti-inflammatory action in vivo

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The hallucinogenic compound, salvinorin A, is a potent κ-opioid receptor (KOR) agonist. However, other target(s) than the KOR, such as the cannabinoid CB1 receptor, have been proposed to explain its multiple pharmacological actions. Here, we have evaluated the effect of salvinorin A in lipopolysaccharide (LPS)-stimulated macrophages as well as in models of inflammation in vivo. Salvinorin A (0.1–10 pM) reduced LPS-stimulated nitrite, TNF-α and IL-10 (but not IL-1β) levels as well as iNOS (but not COX-2) LPS-induced hyperexpression. The effect of salvinorin A on nitrite levels was reverted by the opioid antagonist naloxone, the KOR antagonist nor-binaltorphimine and by the CB1 antagonist rimonabant Salvinorin A also prevented KOR and CB1 hyperexpression induced by LPS. In vivo, salvinorin A reduced the LPS- and the carrageenan-induced paw oedema and formalin-induced inflammatory pain, in a nor-binaltorphimine and rimonabant-sensitive manner. It is concluded that salvinorin A—via KORs and CB1 receptors—exerts ultrapotent actions on macrophages and also shows moderate antinflammatory effects in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Valdés LJ 3rd (1994) Salvia divinorum and the unique diterpene hallucinogen, Salvinorin (divinorin) A. J Psychoactive Drugs 26:277–283

    PubMed  Google Scholar 

  2. Sheffler DJ, Roth BL (2003) Salvinorin A: the “magic mint” hallucinogen finds a molecular target in the kappa opioid receptor. Trends Pharmacol Sci 24:107–109

    Article  PubMed  CAS  Google Scholar 

  3. Vortherms TA, Roth BL (2006) Salvinorin A: from natural product to human therapeutics. Mol Interv 6:257–265

    Article  PubMed  CAS  Google Scholar 

  4. Munro TA, Rizzacasa MA, Roth BL, Toth BA, Yan F (2005) Studies toward the pharmacophore of salvinorin A, a potent kappa opioid receptor agonist. J Med Chem 48:345–348

    Article  PubMed  CAS  Google Scholar 

  5. Chartoff EH, Potter D, Damez-Werno D, Cohen BM, Carlezon WA Jr (2008) Exposure to the selective kappa-opioid receptor agonist salvinorin A modulates the behavioural and molecular effects of cocaine in rats. Neuropsychopharmacology 33:2676–2687

    Article  PubMed  CAS  Google Scholar 

  6. Nemeth CL, Paine TA, Rittiner JE, Béguin C, Carroll FI, Roth BL, Cohen BM, Carlezon WA Jr (2010) Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats. Psychopharmacol Berl 210:263–274

    Article  CAS  Google Scholar 

  7. Braida D, Capurro V, Zani A, Rubino T, Viganò D, Parolaro D, Sala M (2009) Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Br J Pharmacol 157:844–853

    Article  PubMed  CAS  Google Scholar 

  8. McCurdy CR, Sufka KJ, Smith GH, Warnick JE, Nieto MJ (2006) Antinociceptive profile of salvinorin A, a structurally unique kappa opioid receptor agonist. Pharmacol Biochem Behav 83:109–113

    Article  PubMed  CAS  Google Scholar 

  9. Capasso R, Borrelli F, Capasso F, Siebert DJ, Stewart DJ, Zjawiony JK, Izzo AA (2006) The hallucinogenic herb Salvia divinorum and its active ingredient salvinorin A inhibit enteric cholinergic transmission in the guinea-pig ileum. Neurogastroenterol Motil 18:69–75

    Article  PubMed  CAS  Google Scholar 

  10. Capasso R, Borrelli F, Zjawiony J, Kutrzeba L, Aviello G, Sarnelli G, Capasso F, Izzo AA (2008) The hallucinogenic herb Salvia divinorum and its active ingredient salvinorin A reduce inflammation-induced hypermotility in mice. Neurogastroenterol Motil 20:142–148

    PubMed  CAS  Google Scholar 

  11. Capasso R, Borrelli F, Cascio MG, Aviello G, Huben K, Zjawiony JK, Marini P, Romano B, Di Marzo V, Capasso F et al (2008) Inhibitory effect of salvinorin A, from Salvia divinorum, on ileitis-induced hypermotility: cross-talk between kappa-opioid and cannabinoid CB(1) receptors. Br J Pharmacol 155:681–689

    Article  PubMed  CAS  Google Scholar 

  12. Braida D, Limonta V, Pegorini S, Zani A, Guerini-Rocco C, Gori E, Sala M (2007) Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacol Berl 190:441–448

    Article  CAS  Google Scholar 

  13. Fichna J, Schicho R, Andrews CN, Bashashati M, Klompus M, McKay DM, McKay DM, Sharkey KA, Zjawiony JK, Janecka A, Storr MA (2009) Salvinorin A inhibits colonic transit and neurogenic ion transport in mice by activating kappa-opioid and cannabinoid receptors. Neurogastroenterol Motil 21:1326–e128

    Article  PubMed  CAS  Google Scholar 

  14. Walentiny DM, Vann RE, Warner JA, King LS, Seltzman HH, Navarro HA, Twine CE Jr, Thomas BF, Gilliam AF, Gilmour BP et al (2010) Kappa opioid mediation of cannabinoid effects of the potent hallucinogen, salvinorin A, in rodents. Psychopharmacol Berl 210:275–284

    Article  CAS  Google Scholar 

  15. Ji RR, Zhang Q, Law PY, Low HH, Elde R, Hökfelt T (1995) Expression of mu-, delta-, and kappa-opioid receptor-like immunoreactivities in rat dorsal root ganglia after carrageenan-induced inflammation. J Neurosci 15:8156–8166

    PubMed  CAS  Google Scholar 

  16. Di Marzo V (2008) Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 7:438–455

    Article  PubMed  Google Scholar 

  17. Pertwee RG (2009) Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br J Pharmacol 156:397–411

    Article  PubMed  CAS  Google Scholar 

  18. Rossi A, Acquaviva AM, Iuliano F, Di Paola R, Cuzzocrea S, Sautebin L (2005) Up-regulation of prostaglandin biosynthesis by leukotriene C4 in elicited mice peritoneal macrophages activated with lipopolysaccharide/interferon-{gamma}. J Leukoc Biol 78:985–991

    Article  PubMed  CAS  Google Scholar 

  19. Borrelli F, Aviello G, Romano B, Orlando P, Capasso R, Maiello F, Guadagno F, Petrosino S, Capasso F, Di Marzo V, Izzo AA (2009) Cannabidiol, a safe and non-psychotropic ingredient of the marijuana plant Cannabis sativa, is protective in a murine model of colitis. J Mol Med 87:1111–1121

    Article  PubMed  CAS  Google Scholar 

  20. DeLong GT, Wolf CE, Poklis A, Lichtman AH (2010) Pharmacological evaluation of the natural constituent of Cannabis sativa, cannabichromene and its modulation by ∆(9)- tetrahydrocannabinol. Drug Alcohol Depend 112:126–133

    Article  PubMed  CAS  Google Scholar 

  21. Abbott FV, Guy ER (1995) Effects of morphine, pentobarbital and amphetamine on formalin- induced behaviours in infant rats: sedation versus specific suppression of pain. Pain 62:303–312

    Article  PubMed  CAS  Google Scholar 

  22. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  PubMed  CAS  Google Scholar 

  23. Hawiger J (2001) Innate immunity and inflammation: a transcriptional paradigm. Immunol Res 23:99–109

    Article  PubMed  CAS  Google Scholar 

  24. Morris CJ (2003) Carrageenan-induced paw edema in the rat and mouse. Meth Mol Biol 225:115–121

    Google Scholar 

  25. Sawynok J, Liu XJ (2004) The formalin test: characteristics and usefulness of the model. Rev Anal 7:145–163

    Article  Google Scholar 

  26. Grilli M, Neri E, Zappettini S, Massa F, Bisio A, Romussi G, Marchi M, Pittaluga A (2009) Salvinorin A exerts opposite presynaptic controls on neurotransmitter exocytosis from mouse brain nerve terminals. Neuropharmacology 57:523–530

    Article  PubMed  CAS  Google Scholar 

  27. Fairweather D, Cihakova D (2009) Alternatively activated macrophages in infection and autoimmunity. J Autoimmun 33:222–230

    Article  PubMed  CAS  Google Scholar 

  28. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  PubMed  CAS  Google Scholar 

  29. Boscá L, Zeini M, Través PG, Hortelano S (2005) Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 208:249–258

    Article  PubMed  Google Scholar 

  30. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410:471–475

    Article  PubMed  CAS  Google Scholar 

  31. Liu W, Reinmuth N, Stoeltzing O, Parikh AA, Tellez C, Williams S, Jung YD, Fan F, Takeda A, Akagi M et al (2003) Cyclooxygenase-2 is up-regulated by interleukin-1 beta in human colorectal cancer cells via multiple signaling pathways. Cancer Res 63:3632–3636

    PubMed  CAS  Google Scholar 

  32. Moore KW, de Waal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  PubMed  CAS  Google Scholar 

  33. Liu YW, Chen CC, Tseng HP, Chang WC (2006) Lipopolysaccharide-induced transcriptional activation of interleukin-10 is mediated by MAPK- and NF-kappaB-induced CCAAT/enhancer- binding protein delta in mouse macrophages. Cell Signal 18:1492–1500

    Article  PubMed  CAS  Google Scholar 

  34. Braida D, Limonta V, Capurro V, Fadda P, Rubino T, Mascia P, Zani A, Gori E, Fratta W, Parolaro D et al (2008) Involvement of kappa-opioid and endocannabinoid system on Salvinorin A- induced reward. Biol Psychiatry 63:286–292

    Article  PubMed  CAS  Google Scholar 

  35. Di Marzo V, Bisogno T, De Petrocellis L, Melck D, Orlando P, Wagner JA, Kunos G (1999) Biosynthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in circulating and tumoral macrophages. Eur J Biochem 264:258–267

    Article  PubMed  Google Scholar 

  36. Rothman RB, Murphy DL, Xu H, Godin JA, Dersch CM, Partilla JS, Tidgewell K, Schmidt M, Prisinzano TE (2007) Salvinorin A: allosteric interactions at the mu-opioid receptor. J Pharmacol Exp Ther 320:801–810

    Article  PubMed  CAS  Google Scholar 

  37. Marini P, Moriello AS, Cristino L, Palmery M, De Petrocellis L, Di Marzo V (2009) Cannabinoid CB1 receptor elevation of intracellular calcium in neuroblastoma SH-SY5Y cells: interactions with muscarinic and delta-opioid receptors. Biochim Biophys Acta 1793:1289–1303

    Article  PubMed  CAS  Google Scholar 

  38. Guindon J, Hohmann AG (2008) Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol 153:319–334

    Article  PubMed  CAS  Google Scholar 

  39. Cunha-Oliveira T, Rego AC, Oliveira CR (2008) Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev 58:192–208

    Article  PubMed  CAS  Google Scholar 

  40. Ames RS, Lee D, Foley JJ, Jurewicz AJ, Tornetta MA, Bautsch W, Settmacher B, Klos A, Erhard KF, Cousins RD, Sulpizio AC, Hieble JP, McCafferty G, Ward KW, Adams JL, Bondinell WE, Underwood DC, Osborn RR, Badger AM, Sarau HM (2001) Identification of a selective nonpeptide antagonist of the anaphylatoxin C3a receptor that demonstrates antiinflammatory activity in animal models. J Immunol 166:6341–6348

    PubMed  CAS  Google Scholar 

  41. da Cunha FM, Duma D, Assreuy J, Buzzi FC, Niero R, Campos MM, Calixto JB (2004) Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties. Free Radic Res 38:1241–1253

    Article  PubMed  Google Scholar 

  42. Medeiros R, Passos GF, Vitor CE, Koepp J, Mazzuco TL, Pianowski LF, Campos MM, Calixto JB (2007) Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. Br J Pharmacol 151:618–627

    Article  PubMed  CAS  Google Scholar 

  43. Schmidt MD, Schmidt MS, Butelman ER, Harding WW, Tidgewell K, Murry DJ, Kreek MJ, Prisinzano TE (2005) Pharmacokinetics of the plant-derived kappa-opioid hallucinogen salvinorin A in nonhuman primates. Synapse 58:208–210

    Article  PubMed  CAS  Google Scholar 

  44. Ma Y, Liu H, Tu-Rapp H, Thiesen HJ, Ibrahim SM, Cole SM, Pope RM (2004) Fas ligation on macrophages enhances IL-1R1-Toll-like receptor 4 signaling and promotes chronic inflammation. Nat Immunol 5:380–387

    Article  PubMed  CAS  Google Scholar 

  45. Coderre TJ, Vaccarino AL, Melzack R (1990) Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Res 535:155–158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was, in part, supported by “Fondazione Enrico & Enrica Sovena”.

Disclosure

The authors state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angelo A Izzo or Raffaele Capasso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

Effect of dexamethasone (DEX, 0.5–2 mg/kg, i.p.) on paw oedema induced by lipopolysaccharide (LPS) (a) or carrageenan (b) as well as on the formalin test (c). Results are mean ± SEM (n = 6–8 for each group). * P < 0.05 vs. vehicle plus LPS (or carrageenan), and #P < 0.05 vs. vehicle. In Fig. 1C, filled symbols denote statistically (P < 0.01) significant differences vs. formalin. (PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aviello, G., Borrelli, F., Guida, F. et al. Ultrapotent effects of salvinorin A, a hallucinogenic compound from Salvia divinorum, on LPS-stimulated murine macrophages and its anti-inflammatory action in vivo. J Mol Med 89, 891–902 (2011). https://doi.org/10.1007/s00109-011-0752-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0752-4

Keywords

Navigation